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Abstract 

In anisotropic network, hop-counts between nodes may 

not match physical distances well. Hence, it may 

introduce huge errors to employ multi-hop range-free 

localization algorithm to estimate nodes location. In this 

paper, we present a novel multi-hop range-free 

localization algorithm for anisotropy network. Firstly, we 

build the relationship between hop-counts and distances 

among nodes under Tikhonov regularization metric. 

Since the relationship retains all the hop-counts 

characteristics to all anchors in all directions, then we can 

precisely capture the anisotropic relationship between 

hop-counts and physical distances. Finally, we use the 

multilateration technique to estimate the locations of all 

nodes. We evaluate our method based on multiple 

anisotropy factors, and analyze its performance. We also 

compare our method with state-of-art methods, and 

demonstrate the high efficiency of our proposed method. 

Experiments results show that proposed algorithm 

improves localization accuracy by more than 90%. 

Keywords: Wireless network, Tikhonov regularization, 

Anisotropic network, Multi-hop localization, 

Range-free localization 

1 Introduction 

With the miniaturization of micro-electromechanical 

systems as well as the popularity of wireless 

communication, more and more users can easily carry 

portable mobile intelligent terminal equipment. At the 

same time, people’s lives are increasingly dependent 

on mobile devices. Among the services provided by 

many mobile devices, location information is generally 

regarded as the premise of other information services 

[1-9]. The most convenient way to get the location 

information is to equip with a satellite positioning 

system on the mobile terminal, such as global 

positioning system (GPS) or BeiDou Navigation 

Satellite System (BDS).  

The satellite localization system directly 

communicates with the receiving terminal (such as 

GPS or BDS receiver) through the satellite, which 

forms one-hop localization system. However, the 

satellite localization system can only be used in 

outdoor environment without occlusion due to its high 

cost and high power consumption [10]. In addition, a 

research about human activity habits found that we 

human beings spend 80% to 90% of our time in 

indoors [10-11]. Despite worldwide availability, 

GPS/BDS signals are largely unavailable indoors. With 

emerging technologies like ad-hoc, internet of things, 

etc., one hop localization mode has gradually evolved 

into the multi-hop localization mode [12-13]. 

The basic principle of multi-hop localization is that 

the position of non-anchors can be cooperatively 

determined by a few anchors equipped with GPS/BDS 

receiver. According to the method target nodes 

measured, the multi-hop localization algorithms can be 

divided into the range-based multi-hop localization 

method (as shown in Figure 1(a)) and the range-free 

multi-hop localization method (as shown in Figure 1(b)) 

[5]. 

The range-based multi-hop localization method is to 

iterative obtaining the location information between 

nodes through the signal measurement. Therefore, this 

method has relatively strict demands on the hardware, 

so that the equipment cost is high. In addition, in the 

iterative process of the algorithm, the last round of the 

estimation error will be accumulated to the next round, 

resulting in seriously location inaccuracy of the 

subsequent node [14-16]. In contrast, range-free 

algorithms locate non-anchors by exploiting the 

geometry property of the network, and thus achieve 

lower localization accuracy than range-based ones. 

Thus, range-free algorithms have drawn much research 

attention due to their low cost and applicability to 

large-scale applications [17-20]. However, it is 

challenging to design an accurate range-free multi-hop 
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(a) Range-based multi-hop localization 

A

B

 

(b) Range-free multi-hop localization 

Figure 1. Multi-hop localizations 

localization algorithm for anisotropic network, where 

the deployment and the radio propagation of nodes 

might be irregular.  

Figure 2 shows two typical anisotropic networks [18, 

20]. One is a S-shaped network in which nodes are 

irregular deployment (as shown in Figure 2(a)). The 

other is a network in which radio irregularity of nodes 

due to variance in RF sending power or different path 

losses depending on the propagation direction (as 

shown in Figure 2(b)). 

(a) The irregular deployment 

of nodes 

(b) The radio irregular 

propagation of nodes

Figure 2. two anisotropic networks 

In indoor spaces, the distribution area of the nodes is 

often affected by the problem of non-line of sight 

(NLOS) propagation. NLOS makes nodes distribution 

irregular, and makes them fail to obtain accurate 

distance estimates. As shown in Figure 2(a), the 

physical distance from A to B is indicated by the 

dotted line, while the shortest path between A to B is 

indicated by the solid line. We find that the shortest 

path is seriously detoured due to the problem of the 

irregular distribution of nodes or NLOS propagation. 

In the real world shown in Figure 2(b), radio 

irregularity is a common phenomenon when the same 

physical distance among nodes, not the same hop-

counts. As shown in Figure 2(b), the distances between 

A and B, C, D are the same, but their hop-counts are 

different because of radio irregularity. Classical multi-

hop algorithms assume that the network is isotropic 

and normal distributed. Unfortunately, in practice, 

network generally may be distribution irregular and 

radio irregular propagation, which makes the hop-

counts deviating the physical distances. 

In this paper, we propose a novel multi-hop range-

free wireless localization algorithm that called 

Wireless Network Localization through Tikhonov 

(WNLT). The proposed algorithm consists of three 

steps: the measurement step, Tikhonov regularization 

step, and localization step. First, hop-counts 

information among nodes of the given network is 

measured. Second, mapping relationships between 

physical distances and hop-counts among anchors are 

modeled using Tikhonov regularization approach under 

the least-squares metric. Finally, each non-anchor finds 

its own location in a distributed manner under the help 

of mapping model. 

The rest of this paper is organized as follows: In 

Section 2, related work about multi-hop range-free 

localization algorithms in wireless network is 

described. In Section 3, the motivation of this paper is 

explained and the new multi-hop range-free 

localization method is proposed. In Section 4, various 

simulations are conducted and the results of the 

proposed methods are compared with those of previous 

methods. Finally, conclusions are drawn in Section 5. 

2 Related Work 

Multi-hop range-free algorithms locate nodes 

without extra the knowledge of internode distance or 

angle measurements. Therefore, they save the cost of 

ranging hardware, and they are wider application than 

range-based ones. Among the much multi-hop range-

free localization, the most famous are the Distance 

Vector-Hop (DV-hop) algorithm [17], the Amorphous 

algorithm and the Proximity-Distance Map (PDM) [17-

19], and their algorithms and running details are as 

follows. 

2.1 DV-hop 

DV-hop linearly converts the hop-counts into the 

physical distances by computing average per-hop 

distance. The run process of DV-hop can be divided 

into three steps: 

(1) Calculate the least hop-counts between non-

anchors and anchors. Without loss of generality, firstly, 

anchor i floods a message [ ], ,
i i i
x y h  to the rest of 

nodes in the network by distance vector exchange 
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protocol [21-22]. Thereinto, [ ]
T

,
i i
x y  represents the 

coordinate information of the anchor i ; 
i
h  denotes a 

counter to record the least hop-counts to anchor i . The 

value of counter 
i
h  is initialized to 1 and increases by 

1 after each forward. Work as above, every node can 

obtain its minimum hop-counts to all anchors. 

(2) Estimate the average per-hop distance among 

anchors. Once anchor j obtain the minimum hop-

counts from the other anchors, it can report the counter 

i
h  to anchor i . After collecting these values of counter 

from the rest of anchors in the network, anchor i  can 

calculate the average one-hop distance and broadcasts 

this to the whole network. For example, the anchor 'i s  

average one-hop distance is calculated as:  

 
iji j

i

iji j

d

c
h

≠

≠

=

∑
∑

 (1) 

where 
ij

d  denotes the physical distance between 

anchor i and anchor j, and hij denotes the minimum 

hop-counts between them. The average one-hop 

distance of every anchor represents the expected 

distance each hop progresses and can be seen a 

mapping parameter between hop-counts and distance. 

In DV-hop, every anchor maintains one its own fixed 

mapping parameter. In practical application, in order to 

avoid excessive flooding communication, the 

parameter of Time To Live (TTL) can be set on the 

packet to reduce the flooding traffic. 

(3) Location estimation. A non-anchor uses the 

mapping parameter received from its nearest anchor to 

estimate its physical distances to anchors. Let 
ij
h  

denote the hop-counts between node i and node j. Then 

the corresponding distance 
ij

d  can be calculated as: 

 
ij i ij

d c h= ×  (2) 

After an unknown node receives the mapping 

coefficient from more than three adjacent anchors, it 

uses trilateration to estimate its own location. 

2.2 Amorphous 

Nagpal [19] proposed another multi-hop range-free 

localization algorithm similar to DV-hop which use 

one radio hop coverage method proposed by Kleinrock 

and Slivers [1] to the average one hop distance. 

Amorphous’s average one hop distance is a fixed 

parameter of the whole network, and it can be 

described as 

 1
2

1

1 cos 1

local

local

hop

n
n

d

R e e ar t t t dt
π

⎛ ⎞−⎜ ⎟− ⎝ ⎠

−

=

⎛ ⎞
+ − − −⎜ ⎟

⎝ ⎠
∫

 (3) 

Thus, the distance 
ij

d  between node i  and node j  

can be obtained by ij hop ijd d h= × .where 
ij
h  is the hop-

counts between node i  and node j . Finally, after an 

unknown node gets more than three distances from 

anchors, it estimates its own coordinate. 

DV-Hop and Amorphous perform well in isotropic 

network but encounter severe performance degradation 

in anisotropic network, because they all rely on a 

unified mapping parameter to estimate the distances 

between anchors and non-anchors. Especially the 

Amorphous’s mapping parameter is unique parameters 

of the whole network, leading to worse performance 

than DV-hop in anisotropic networks. 

2.3 PDM 

In recent years, several multi-hop range-free 

algorithms making use of machine learning have been 

put forward for the localization problem in anisotropic 

network. They employ learning algorithm to construct 

the mapping model between anchors, and a trained 

mapping model based upon the hop-counts and 

distances relationship of anchors. The locations of non-

anchors are obtained from the physical distances 

between the anchors and the non-anchors by 

employing the trained mapping model. Based on this 

idea, Lim [18] proposed Proximity Distance Map 

(PDM) localization algorithm that directly builds a 

mapping model of hop-counts and distances among 

anchors. In the PDM algorithm, firstly, anchors 

directly construct a mapping model using truncated 

singular value (TSVD) [24] under the help of least-

squares, and broadcast this model to all common nodes. 

Secondly, each non-anchor obtains the hop-counts 

from its anchor list, severally estimates its distances to 

anchors by multiplying this model. Lastly, a common 

node estimates its location by multilateration. 

Unlike the previous multi-hop range-free algorithm, 

PDM algorithm don not using unified mapping 

parameter, but use a trained mapping model. Due to 

this trained mapping model of PDM retains all the hop 

distance characteristics to all anchor nodes in all 

directions. PDM can tolerate multiple anisotropy 

factors of the network and achieves high localization 

accuracy. 

Inspired by the PDM, Lee etc. [20, 25] have 

proposed two multi-hop range-free algorithms based 

on kernel regression which called Localization through 

Support Vector Regression (LSVR) and Localization 

through Multi-dimensional Support Vector Regression 

(LMSVR). LSVR and LMSVR can partly solve the 

non-line problem between hop-counts and distance, 

however, the core algorithm of them involves more 

parameters which usually need to be optimized by 

cross-validation or the grid search [26]. Therefore, they 

are not suitable for the applications of wireless 

networks. 

Interestingly, PDM transfer hop-counts to physical 

distances by formulating the localization into a 
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regression problem. However, PDM never discussed 

the problem of the different measurement unit between 

hop-counts and distances. Besides that, PDM have not 

described the selection of TSVD’s truncated parameter. 

In this paper, by introducing another regularized 

technique different from TSVD and exploiting the 

more precise relationship between hop-counts and 

distances in the network, the proposed algorithm 

develops a mapping model under Tikhonov’s 

supervision to represent the relationship between the 

hop-counts and distances of the network. Contrary to 

TSVD, Tikhonov regularization does not neglect any 

singular value component, but by adding a filter factor 

to damp or filter out these high frequency oscillations 

and thereby ensure more stability and accuracy of the 

solution. In addition, our proposed approach considers 

the selection of the filter factor and measurement unit 

transformation. 

3 WNLT Localization Algorithm 

3.1 Problem Statement 

There are n  nodes { }
1

n

i i
S

=

 in a two-dimensional 

plane, where the first ( )m m n�  nodes represent the 

anchors and the remaining n m−  represents the non-

anchors. The anchors { }
1

m

i i
S R

=

∈ are defined as a kind 

of node that are aware of their own positions, either 

through GPS/BDS or manual recording and entering 

positions during deployment. Non-anchors { }
1

n m

i i
S U

−

=

∈  

are other kinds of nodes which estimate their positions 

through the help of anchors and localization algorithm. 

The coordinates of the nodes can be rewritten as 

follows 

 ( ) ( ), 1, , ,
T

p p p
S x y for p m n= =cor � �  (4) 

For every pair of nodes i and j, the physical distance 

is defined as 

 
( ) ( ) ( )

( ) ( )2 2

,
i j i j

i j i j

d S S cor S cor S

x x y y

= −

= − + − ∈R

 (5) 

After a period of time, m  training pairs data set are 

collected from the anchors, i.e., { },H D , where 

[ ]1 2
, , ,

m
�H = h h h  and 

,1 ,
, ,

T

i i i m
h h⎡ ⎤= ⎣ ⎦�h ,

i
h  be least 

hop-counts between the anchor 
i

S  and the other 

anchors, [ ]1 2
, , ,

m
�D = d d d  and 

,1 ,
, ,

T

i i i m
d d⎡ ⎤= ⎣ ⎦�d , 

i
d  be physical distance between the anchor 

i
S  and the 

other anchors. Accordingly, the multi-hop range-free 

wireless localization problem can be formulated as the 

formula (6): 

 
( )

( ) ( ) ( )

Estimate

Given , , , ,

k

i i j i k

S

S d S S andh S S

cor

cor

 (6) 

where ,
i j

S S R∈ , 
k

S U∈ , and ( ),
i k

h S S  is the hop 

count between the reference node 
i

S  and the unknown 

node 
k

S . As a result, the mapping relationship between 

the hop count and the physical distance can be trained, 

i.e., 

 = +D HΤ Ε  (7) 

Where ,D H are respectively the physical distance 

matrix and the hop count matrix between the related 

nodes; Τ  is the mapping relationship between the hop 

count and the distance; Ε  is the random error. 

3.2 Localization Algorithm 

Localization methods based machine learning 

usually consists of three basic steps [27]: (i) the data 

collection phase, which is also called measure phase, 

(ii) the model building phase, which is also called the 

training stage, and (iii) the location estimation phase, 

which is also called the test stage.  

The data collection phase is mainly the collection of 

hop-counts and distance between anchors. Each anchor 

and non-anchor exchanges the hop-counts information 

with one another, and each anchor transmits its 

position information to the other anchor nodes. In the 

model building phase, machine learning methods can 

be used to train and construct mapping model hop-

counts and physical distance between anchors. After 

the model building is completed, location-unknown 

node can determine their own position locally by the 

mapping model. The aforesaid three steps are 

discussed below in greater detail. 

The data collection phase. At the beginning of the 

algorithm, the anchor transmits a broadcast information 

packet with its own location information to the rest 

nodes by distance-vector routing protocol within the 

communication radius. The packet at least contains 

identification field (ID), the location information and 

the hop count field (Hop counts, the initial value is 1). 

The packet format is as follows: 

   

After receiving the packet information, each node 

records the minimum hop-counts to the connected 

anchor. Meanwhile incriminating the field value of 

Hop_counts in the packet by 1. But when the field 

value of Hop_counts received from the same anchor is 

not the minimum, the procedure automatically ignores 

the packet. Though the above method, all the nodes in 

the network record the smallest hop-counts to their 

connected anchors. Corresponding physical distance 

between the anchors can be obtained by the physical 

distance formula (5) based on their own coordinates. 
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The model building phase. After obtaining the 

minimum hop count and the physical distance between 

the reference nodes, the mapping relationship between 

the minimum hop count and the actual distance is 

constructed by using the formula (7). This mapping 

model of WNLT is really an optimal linear 

transformation T that gives a mapping from the hop-

count H to the physical distance matrix D. It is easy to 

know that T is a m m×  square matrix. Each column 

vector 
i
t of Τ  can be obtained by minimizing the mean 

square error of the errors: 

 ( )
22

1

m

i ik k i i i

k

d

=

= − = −∑e h t d Ht  (8) 

Note that the least square solution of the column 

vector 
i
t  is: 

 ( ) 1
T T

i i

−

=t H H H d  (9) 

In order to avoid the problem of “the big number eat 

the little number” caused by the level of number 

difference in the transformation process of the hop-

count and the distance, in the actual operation process 

the centralized processing will be carried out for the 

hop-count matrix and the distance matrix. So, the 

formula (7) is turned into = +
� �D HΤ Ε , where ,

� �D H  

are the centralized distance matrix and the centralized 

hop count matrix, respectively. At this point, the matrix 

expression of the mapping model is: 

 ( ) 1
T T

ˆ

−

=
� � � �T H H H D  (10) 

Due to the lack of sufficient information or linear 

correlation in hop-counts matrix, however, the solution 

may not be unique or can cause an arbitrarily large 

perturbation by an arbitrary small perturbation during 

constructing the mapping model. Theoretically, 

regularization method is considered a good tool for 

solving ill-posed problems, and Tikhonov 

regularization is the most well-known and effectively 

form of regularization [28-30]. Here, according to the 

idea of Tikhonov regularization, the mapping model 

(formula 7) should be satisfies that: 

 − ≤ ΔHT D  (11) 

where vΔ = . When the formula (11) takes the equal 

sign, the mapping relationship T  of the formula (7) 

can be obtained. Thus, the solution of the mapping 

relationship T  can be obtained by the minimization of 

the formula (12), and the minimization formula is: 

 { }2 2

min γ− +H DΤ Τ  (12) 

where 0γ ≥  is a regularization parameter that 

determines the amount of regularization. Note that this 

is a conditional extremum problem, which can be 

converted into an unconditional extremum problem to 

solve by the Lagrange equation. Therefore, we obtain 

the relationship model of anchors between the hop-

counts and the distances. 

 ( ) 1
T T

ˆ γ
−

= +
� � � �T I H H H D  (13) 

The formula (13) is also called the Tikhonov 

regularization solution, in which I  is the identity 

operator. It is noted that the regularization parameter 

plays essentially the same role as the bandwidth of a 

filter when smoothing noisy data. Hence, by choosing 

the regularization parameter γ  too small, the solution 

will cause an arbitrarily large perturbation because an 

arbitrary small perturbation of the hop-counts. 

Otherwise, if the regularization parameter γ  is chosen 

too large, the solution is affected by still too much 

human disturbance. There are several strategies to 

determine the regularization parameter, e.g., the 

generalized deviation criterion, the generalized cross-

validation and L-curve method. However, any 

parameter selection strategy can be lead to an 

unacceptable run-time complexity for multi-hop 

localization. Literatures [31] describes the solution of 

regularization is ill-posed as T
0.01<

� �H H . Hence, we 

choose the regularization parameter 0.01γ =  to avoid 

the high computational complexity of regularization 

parameter in this paper. 

The location estimation phase. Each common node 

t
S  starts to estimate the physical distance to anchors 

after receive the trained mapping model and the hop-

counts vectors. Let 
t
h  be the hop-count vector between 

common node 
t

S  and all anchors and ˆT  be the trained 

mapping model, the problem of distance estimation can 

be written as 

 
T

,1 ,
ˆ ˆˆ ˆ

t t t m t
d d⎡ ⎤= +⎣ ⎦

� �
�d = Th h  (14) 

where ˆ
t

d is the estimated distance vector between 
t

S  

and m anchors, �h  is the centering hop-counts vector of 

m anchors for avoid the difference between hop-counts 

and distances. 

After the estimates of the distances to the ( )3k k ≥  

anchor nodes are calculated, any non-anchor use 

multilateration to Estimate its own location. For multi-

hop localization problem, the square of the distance 

between the anchors and non-anchor can be expressed 

as 

 

2 2 2

1 1 1

2 2 2

2 2 2

2 2 2

( ) ( )

( ) ( )
3

( ) ( )
k k k

x x y y d

x x y y d
k

x x y y d

⎧ − + − =
⎪

− + − =⎪
≥⎨

⎪
⎪ − + − =⎩

�
 (15) 

where ( , )x y  is the coordinate of the non-anchor. 

( ) ( ) ( )1 1 2 2
, , , , , ,

k k
x y x y x y�  are the coordinates of the 
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anchors. If the k -th equation is subtracted from the 

first equation to the ( )1k − -th equation, we can get 

 

1 1

2 2 2 2 2 2

1 1 1

1 1

2 2 2 2 2 2

1 1 1

2( ) 2( )

2( ) 2( )

k k

k k k

k k k k

k k k k k k

x x x y y y

d d y x y x

x x x y y y

d d y x y x

− −

− − −

− + − =⎧
⎪

− + + − −⎪
⎪
⎨
⎪ − + − =
⎪
⎪ − + + − −⎩

�  (16) 

Expressing Equation (17) in matrix form 

 

1 1

1 1

2 2 2 2 2 2

1 1 1

2 2 2 2 2 2

1 1 1

2( )   2( )

2( )  2( )

n n

k k k k

k k k

k k k k k k

x x y y
x

y
x x y y

x x y y d d

x x y y d d

− −

− − −

− −⎡ ⎤
⎡ ⎤⎢ ⎥ =⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥− −⎣ ⎦

⎡ ⎤− + − + −
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − + −⎣ ⎦

� �

�

 (17) 

where 

1 1

2 2

1 1

( )   ( )

( )   ( )
2

( )  ( )

n n

n n

k k k k

x x y y

x x y y

x x y y
− −

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= ×
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

� �
A ,  

2 2 2 2 2 2

1 1 1

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

1 1 1

k k k

k k k

k k k k k k

x x y y d d

x x y y d d

x x y y d d
− − −

⎡ ⎤− + − + −
⎢ ⎥

− + − + −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− + − + −⎣ ⎦

�
b  

However, in practice the error is inevitable in the 

measurements which mean the ideal equation (18) 

cannot be obtained. In fact the equation has the 

following form: = +Ax b ε .where ε  denotes error 

vector. In order to minimize the effect of noise, choose 

the sum of the squared errors as the measure scale of 

collective loss, i.e., 

 
( ) ( )

( )

T

T T

argmin

argmin 2 T T

− −

⇒ − +

b Ax b Ax

x A Ax b Ax b b

 (18) 

So the localization problem transforms to an 

optimization problem. Set the partial derivative of the 

formula (19) to be 0, then 

 
T T

T T

2 2 0− + =

⇒ =

A b A Ax

A b A Ax

 (19) 

If there is an inverse matrix of 
T

A A , that is to say 

anchors does not lie in a line, the location of the non-

anchor can be calculated as the solution of this 

equation, given by of 

 T 1 Tˆ ( )−=x A A A b  (20) 

Table 1 compares WNLT with the three state-of-the-

art range-free approaches: DV-hop, Amorphous, and 

PDM. Both DV-hop and Amorphous assume isotropic 

networks and estimate the node location with their 

network distances to the three anchors. The difference 

is that the former floods the network for computing the 

hop-counts so the communication cost of DV-hop is 

O(n2), while the latter only broadcast its per-hop 

distance and the common nodes do not send any 

requests so the communication cost of Amorphous is 

O(n). The computation costs of DV-hop and 

Amorphous are O(n). Both PDM and WNLT are a 

regression-based approach which with the help of a 

portion of anchors can handle anisotropic networks. 

Relying on each node flooding the network to collect 

the hop-counts to all the anchors, PDM and WNLT. 

Table 1. Algorithm comparison 

Algorithm 
Communication 

cost 

Computation 

cost 

Applicable 

networks 

DV-hop O(n2) O(n) 
Isotropic 

network 

Amorphou

s 
O(n) O(n2) 

Isotropic 

network 

PDM O(n2) O(n3) 
Anisotropic 

network 

WNLT O(n2) O(n3) 
Anisotropic 

network 

4 Performance Analysis 

Multi-hop localization algorithm is a popular 

scheme for large-scale network applications, so it 

needs a large number of nodes in practical applications. 

In addition, under the same network environment, the 

parameter of the localization algorithm is sometimes 

required to adjust. Due to the above reasons, under 

limited expenditure and experiment conditions, it may 

be difficult to continue the verification work. Hence, 

we evaluate the performance of the proposed algorithm 

with the simulation software of MATLAB. In order to 

prevent the influence of single experiment on the 

experiment results, 100 simulations were conducted in 

each experiment. During each experiment, the nodes 

were redeployed in the experiment area, the results of 

each experiment were summarized, and the mean value 

of 100 root mean squares (RMS) was used as the 

evaluation basis, as shown in the following: 

 2

1

( 
1

)
n m

i
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S X X
n m
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−

=

= −
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∑  (21) 

We suppose the nodes are arranged in two different 

kinds of anisotropic network the topologies of which 

are very similar to those of the real-world applications. 

In the simulations, we compare the proposed WNLT 

algorithm with three related multi-hop localization: (1) 

the classic DV-hop algorithm proposed in [17]; (2) 

Amorphous algorithm proposed in [19]; and (3) PDM 

proposed in [22].  

In PDM, items containing these small singular 
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values are discarded to in order to maintain the stability 

of the solution of TSVD [28]. Here we set 3 as the 

threshold value, items containing the singular values 

smaller than 3 are discarded. For WNLT, its 

performance is closely related to the regularization 

parameter γ . We set 0.01γ = in our simulations. 

4.1 Problem Statement 

In this set of experiments, barriers were set in the 

deployment environment to ensure that the propagation 

path of nodes was not at a straight line. Due to the 

barriers, the nodes presented S-shape distribution. 

Nodes are deployed as the following two types. 

Random deployment. 300 nodes are randomly and 

evenly deployed in a 500×500 square area. 

Grid deployment. 363 nodes are deployed whose side 

length of grids is 20 m in a 500×500 square area.  

Figure 3(c) to Figure 3(j) show localization results 

of DV-hop, Amorphous, PDM and WNLT, 

respectively in the S-shaped area. In Figure 3, the 

circles refer to common nodes and the squares refer to 

anchors. The true location of common node and its 

estimation is connected by a line, and the longer the 

length of line is, the bigger the localization error. 

The S-shape network is a classic anisotropic 

network. In this group of simulation, we can find when 

the network is anisotropic, hop-counts between nodes 

may not mismatch physical distance well. For DV-hop 

and Amorphous, it may introduce huge errors to use a 

fixed mapping coefficient for matching hop-counts to 

distances. Especially for Amorphous, it uses a global 

network unique fixed coefficient, witch resulting in 

greater error. In contrast, PDM and WNLT can 

effectively match this mapping relationship between 

nodes. PDM and WNLT directly construct the optimal 

linear transformation between hop-counts and physical 

distances, so that more accurate hop-counts to 

distances transformation can be obtained between 

nodes, and better location estimation can be obtained. 

The proposed WNLT method has considered that the 

level of number difference between hop-counts and 

physical distances. We weaken the measurement level 

difference between hop-counts and physical distances 

before building the mapping model by the 

centralization method. Furthermore, in order to avoid 

the complicated process of parameter selection and 

ensuring the localization precision, we also adopt the 

classic optimal regular parameter. Figure 3(c) to Figure 

3(f) show the localization results of random 

deployment, and the final RMS of DV-hop, 

Amorphous, PDM and WNLT are 179.6504, 553.039, 

57.231, 57.231 and 38.1439 respectively. Figure 3(g) 

to Figure 3(j) show the localization results of regular 

deployment, and the final RMS of DV-hop, 

Amorphous, PDM and WNLT are 162.491, 647.9535, 

57.7465 and 38.6313 respectively. 

    

(a) Random deployment 

of nodes in the S-shaped 

distribution 

(b) Regular deployment 

of nodes in the S-shaped 

distribution 

(c) Localization result of 

DV-hop 

 

(d) Localization result of 

Amorphous 

 

    

(e) Localization result of 

PDM 

(f) Localization result of 

WNLT 

(g) Localization result of 

DV-hop 

(h) Localization result of 

Amorphous 

  

  

(i) Localization result of 

PDM 

(j) Localization result of 

WNLT 

  

Figure 3. Localization results of the random and regular deployments in the S-shaped distribution of nodes 
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Figure 4(a) and Figure 4(b) respectively show the 

effects of the number of anchors with different multi-

hop range-free localization under random deployment 

and grid deployment. Literature [23] analyze that the 

number of anchors setting should ensure that there are 

6 neighbor nodes around each node in the network. 

Therefore, we set the number of anchors gradually 

increases from 20 to 30 with the step size of 2. In 

accordance with Figure 4, it is easy to see that under 

both the random deployment and regular deployment, 

the Amorphous method has the bigger RMS value, 

which indicates that it is very sensitive to the 

anisotropic network. The localization performance of 

DV-hop method is superior to that of Amorphous 

method, because the Amorphous method only has one 

fixed coefficient in anisotropic network. However, 

both PDM and WNLT can be relieved performance 

degradation due to the mismatch problem between 

hop-counts and distances in anisotropic network, so 

they demonstrate much better performance than the 

previous methods. More specifically, as showed in the 

Figure 4, the proposed WNLT outperforms the PDM 

method. This is the inevitable result because the 

property between hop-counts and distances are 

captured for the proposed WNLT. Under random 

deployment, compared to the DV-hop, Amorphous and 

PDM methods, the localization precision of the 

proposed WNLT is improved by 79.4%, 93.5% and 

28.9% respectively. Under regular deployment, the 

average localization precision of the WNLT method is 

enhanced by 79.7%, 94.2% and 32.5% respectively. 

 

(a) Random deployment 

 

(b) Regular deployment 

Figure 4. The bar graph of the change of RMS of four 

algorithms with the different number of anchors 

4.2 Radio Irregularity Problem of Nodes 

Radio irregularity is a common phenomenon, and is 

one of the main reasons for the anisotropic network. 

Radio irregularity results in uneven node connectivity, 

which further causes that the node will not be 

connected with node of equal distance. Hence, we 

employ the parameter DOI (Degree Of Irregularity) to 

evaluate the adaptability and stability of the proposed 

algorithm in this section.  

Assumed that communication range distributed in 

the [ ] ,r rδ δ− + ,  δ  is maximum range of the 

communication range, DOI [32] is defined as rδ , 

which is exploited to measure degree of irregular 

communication range. Figure 5 and Figure 6 respectively 

describe examples of the radio propagation model 

when DOI=0 and DOI=0.01. 

 

Figure 5. Irregular degree of the signal transmission 

Figure 6 shows that under the same node distribution, 

the node connection is different because of the 

different DOI values. 

  

(a) Regular transmission 

 

(b) DOI=0.01, irregular 

transmission 

Figure 6. Comparison between the regular transmission 

and the irregular transmission 

In this section, we set up DOI=0.01, and assume that 

nodes are randomly or regularly distributed in the area 

of 500×500 with no obstacles. There are 300 nodes 

deployed in the random deployment; a total of 441 

nodes are in the regular deployment, and the distance 

between nodes is 25. The increase of the reference 

nodes in the random deployment scene is similar to the 

previous section. In order to maintain the ratio of the 

reference node in the random deployment, the number 

of the reference nodes in the regular deployment 

experiment increases from 26 to 36 by 2 as the length 
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of the step. 

Figure 7(a) and Figure 7(b) show the deployments of 

the experiment. The localization results of DV-hop, 

Amorphous, PDM and WNLT are shown from Figure 

7(c-f), and their RMS errors are 63.8248, 97.0551, 

45.8464, 36.7001, respectively. Uneven node 

distribution still has high impact on the multi-hop 

range-free method that adopts fixed matching 

coefficient. In accordance with Figure 7, we can see 

that the RMS errors of DV-hop and Amorphous that 

adopt fixed matching coefficient are significantly 

higher than the multi-hop range-free methods PDM 

and WNLT which do not use fixed matching 

coefficient. In accordance with Figure 7, we can also 

find that in this set of experiments, the WNLT method 

proposed in this paper still has higher localization 

precision.

    

(a) Random deployment 

under radio irregularity 

(b) Regular deployment 

under radio irregularity 

(c) Localization result of 

DV-hop 

(d) Localization result of 

Amorphous 

   

(e) Localization result of 

PDM 

(f) Localization result of 

WNLT 

(g) Localization result of 

DV-hop 

(h) Localization result of 

Amorphous 

 

  

(i)Localization result of 

PDM 

(j) Localization result of 

WNLT 

  

Figure 7. Localization results of the random and regular deployments, DOI=0.01 

Figure 8 shows the effects of the number of anchors 

with DOI=0.01 on the localization performance. We 

can see that WNLT always obtains the best localization 

accuracy. Compared with DV-hop, Amorphous and 

PDM, the average localization accuracies of the 

proposed WNLT are improved by 28.5%, 57.1% and 

18.2%, respectively, while in the regular deployment, 

they are improved by 33.9%, 66.4% and 17.7%, 

respectively. 

5 Conclusion 

We have presented a multi-hop range-free localization 

method based on Tikhonov regularization for 

anisotropy network. We first construct a hop-distance 

mapping model with the help of the Tikhonov 

regularization after centralized data. We show that the 

multi-hop localization can be formulated as a 

regression problem, which can effectively avoid the 

influence of anisotropy on localization. Compared to 

similar algorithms, our approach can simultaneously 
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(a) Random deployment 

 

(b) Regular deployment 

Figure 8. The bar graph of the change of RMS of four 

algorithms with the different number of reference 

nodes, DOI=0.01 

handle two typical anisotropic networks, i.e., irregular 

distribution and radio irregularity. Simulation results 

demonstrate that the proposed approach has the 

characteristics of easiness of parameter setting and can 

effectively reduce distance estimation error in 

anisotropic network. 
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