
Hybrid Recommendation Algorithm Based on Latent Factor Model and PersonalRank 919

Hybrid Recommendation Algorithm Based on Latent Factor

Model and PersonalRank

Jingjing Hu1, Linzhu Liu1, Changyou Zhang2, Jialing He1, Changzhen Hu1
*

1 School of Software, Beijing Institute of Technology, China
2 Institute of Software, Chinese Academy of Science, China

hujingjing@bit.edu.cn, 2220140568@bit.edu.cn, changyou@iscas.ac.cn, 1181710323@qq.com, czhoo@bit.edu.cn

*Corresponding Author: Jingjing Hu; E-mail: hujingjing@bit.edu.cn

DOI: 10.3966/160792642018051903027

Abstract

To promote the development of future social networks,

an efficient recommendation algorithm is needed. Due to

high-dimensional structures and missing rating

information of the user-item matrix caused by sparse data,

the direct use of a single recommendation algorithm is

inefficient. In order to improve the accuracy of

personalized recommendations, we propose an improved

hybrid recommendation algorithm based on the latent

factor model (LFM) and the PersonalRank algorithm,

which adopts a cascade mixing approach with features

expanding. First, it fills in a sparse matrix using LFM for

the users who did not evaluate for the items. Next, it sets

up a graph model and uses the PersonalRank algorithm in

the filling matrix. Finally, it computes PR values of each

user for items and implements sorting. The efficiency of

the hybrid algorithm was verified on the MovieLens

dataset. Compared with the PersonalRank algorithm, it

can improve the accuracy rate and the recall rate of top-N

recommendations.

Keywords: Latent factor model, PersonalRank, Hybrid

recommendation algorithm

1 Introduction

PersonalRank originates from the PageRank

algorithm, and PageRank is applied to the popular

search engine Google [1-2]. It is a personalized

recommendation algorithm based on graphing, and can

transform the personalized recommendation problem

into node selection in a graph. However, owing to data

sparseness of the user-item rating matrix, use of this

algorithm alone will predict ratings with low accuracy.

Instead, it is necessary to use one of several effective

strategies to fill in the sparse matrix [3-4].

Latent factor model (LFM) is a kind of algebraic

model and calculation theory used for information

retrieval and knowledge acquisition [5]. The model

was proposed in the field of text mining earliest, which

was used to analyze a large number of text sets

obtained by statistical calculating and extract the latent

semantic structure between words and words. The

latent semantic structure representing words and texts

can be used to remove the relevance between words

and simplify text vectors so as to achieve the

dimension reduction.

LFM usually creates a scoring matrix, or a user-item

matrix. In this matrix, each row element corresponds to

a user; each column element corresponds to an item;

and each record indicates a user’s rating of an item [6].

From the view of matrix decomposition, LFM

decomposes the user’s scoring matrix into two low

dimensional matrices, which aims at approximately

representing the scoring matrix. The two low

dimensional matrices are learned by training the data

and optimizing the loss function. The product of the

two lower dimensional matrices can be used to predict

the target user’s ratings of the items. In recent years,

LFM has obtained good application effect in top-N

recommendations.

In an actually application system, it is hard to reach

high precision rate for a single recommendation

algorithm, so a variety of recommendation systems

utilize mixed recommendation algorithms to improve

the accuracy.

The main purpose of using hybrid recommendation

algorithm is to alleviate the flaws of each

recommendation algorithm itself. For example, the

most traditional hybrid recommendation system takes

use of a recommendation algorithm based on content

recommending and collaborative filtering-based

recommending [7]. The hybrid algorithm not only

solves the problem of collaborative filtering algorithm

about cold start, but also solves the problem of sparsity

in the scoring matrix. And it also resolves the problem

that content recommendation result is too single. It not

only overcomes the limitation of each recommendation

algorithm, but also, to a certain extent, improves the

accuracy of the recommending. Therefore, it is the key

point of this paper to implement an effective hybrid

recommendation algorithm. Specifically, LFM and

PersonalRank algorithm are mixed to obtain higher

recommendation precision.

920 Journal of Internet Technology Volume 19 (2018) No.3

The structure of the paper is organized as follows.

Section 1 illustrates the background and fundamental

principles of recommendation algorithms. Section 2

describes the detailed algorithm of LFM and

PersonalRank. Section 3 proposes a hybrid

personalized recommendation algorithm based on LFM

and PersonalRank. The efficiency of recommendation

is verified in Section 4, and the final section presents

the conclusions.

2 The Algorithm Basis

2.1 PersonalRank

PersonalRank is a graph-based recommendation

algorithm that transforms the recommendation problem

into node selection in graph [8-9]. Using a graph to

present the rating behavior for users, the rating

behavior can be seen as a series of tuples where each

tuple (,)u i indicates the rating of user u for item i.

Therefore, the data can be expressed by a bipartite

graph.

G(V, E) represents a bipartite graph for user-item,

where
U I

V V V= ∪ consists of the nodes for a set of

users and items. For each tuple (,)u i in the data set,

the graph has a set of edges (,)
u i

e v v , where
u U
v V∈ is

the corresponding node of user u, and
i I
v V∈ is the

corresponding node of item i. The bipartite graph is

shown in Figure 1, in which the circle represents the

user and the box indicates the item. It can be seen that

there are records of past scoring for user A on items a

and b, user B on items b and d, user C on item a, and

user D on items a, c, and d.

Figure 1. The user - item bipartite graph model

The basis of the PersonalRank algorithm is that the

user u walks randomly from the starting node vu. When

wandering to a random node, the user first decides

whether to continue walking or to terminate the walk

and restart from the starting node vu according to the

probability
()

()
() (1)

()
i

j in i

PR j
PR i r

out i
α α

∈

= − + ∑ . The

“in(i)” indicates the set pointing to i and the “out(i)” is

the set that i is pointing to. If it needs to continue, a

node will be selected to be the next node according to

the uniform distribution randomly, and in this manner

the user walks to the end. The probability of accessing

each item node will converge to a number that is the

final access probability for that item node [8]. This is

shown in formula 1, where PR denotes the access

probability of node i.

()

()
() (1)

()
i

j in i

PR j
PR i r

out i
α α

∈

= − + ∑ ,
1,

0,
i

i u
r

i u

=⎧
= ⎨

≠⎩
 (1)

From the formula (1), the main difference between

PersonalRank and PageRank algorithm is that

PersonalRank algorithm replaces 1/N

with

i
r , where u

represents the target user, which means that the

probability from different points is different, so the

calculated value is the correlation degree of user u

relativity that user u relating to all the points.

The recommendation algorithm based on graph

model can establish the relationship between users and

objects better and more intuitively, and get the top-N

recommendation list more naturally. However, because

the algorithm requires continuous iteration on the

binary graph to make the PR values of each node

convergent in the graph. The time complexity of the

algorithm is very high.

Therefore, PersonalRank is transformed into the

form of matrix to take the place of the iterative method

as shown in formula 2. M is the transition probability

matrix of the binary graph, i.e.

0

0

A
M

B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

(2)

In the matrix, n m

A R
×

∈ , n is the number of users,

and m is the number of items. If user i has connection

with items j, then the value of Rij is assigned to the

reciprocal of the degree of user node. In the matrix of
m n

B R
×

∈ , if there is correlation between user i and

item j, then the value of Rij is assigned to the reciprocal

of the degree of item node.

Then, the iterative formula 1 can be transformed into

formula 3.

0

(1) T
r r M rα α= − + (3)

Where
0

0

V
r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, V is an n-dimensional vector, and

for the user i, the values in the i-th row of the vector V

is 1 and the values in other positions are 0.

The final solution is shown as in formula 4.

 1

0
(1)(1)T

r M rα α
−

= − − (4)

So it only needs to calculate
1(1)T

Mα
−

− once, but it

needs to calculate the inverse matrix of sparse matrix

rapidly.

2.2 Latent Factor Model

Latent factor model (LFM) builds on the

relationship between users’ interests and items to be

Hybrid Recommendation Algorithm Based on Latent Factor Model and PersonalRank 921

recommended by extracting latent features [10]. From

the perspective of matrix factorization, two lower-

dimensional matrices are divided by LFM. Learning

the two matrices requires optimizing the cost function.

Then, the two matrices can predict the scores for

different items evaluated by target users.

Formula 5 is shown to calculate the interest of items

for users.

,1 ,

K

UI U I U kk k I
R P Q P Q

=

= =∑ (5)

The matrix R is the rating matrix, where value rij

represents the score of itemj to useri. For a user, when

the interest measure of all items is calculated, all items

can be sorted to make additional recommendations.

LFM algorithms extract several themes from a data set

as a bridge to connect the users and items. Matrix R

represents the product of the matrix P and Q.

P is a user-class matrix, where pij represents the

interest measure of classj for useri. Q is a class-item

matrix, where qij represents the weight of classi for

itemj.

To calculate the parameter values in the P matrix

and Q matrix, the common method solves this

parameter values by an optimization with cost function.

The gradient descent algorithm is a kind of basic

method for this optimization [11-12].

Learning the P and Q matrix can use the observed

value of the training set directly by minimizing RMSE

(Root Mean Square Error), where the cost function is

defined as formula 6.

2

(,) (,) 1

(,) () ()
F

ui ui ui uf if

u i Train u i Train f

C p q r r r p q
∈ ∈ =

= − = −∑ ∑ ∑ (6)

The direct optimization of the cost function may

lead to over-fitting. Therefore, it is necessary to add the

regular term
2 2

()
u i
p qλ + , where λ is the

regularization parameter, 0λ ≥ . Thus the formula 7 for

cost function is obtained.

2 22

(,) 1

(,) () ()
F

ui uf if u i

u i Train f

C p q r p q p qλ

∈ =

= − + +∑ ∑ (7)

The above cost function in formula 7 defines two

sets of parameters ufp and ifq , and using the gradient

descent method first requires computing the partial

derivative of the cost function. Thus the formula 8 is

obtained.

2 2

2 2

ik uk

uf

uk ik

if

C
q p

p

C
p q

q

λ

λ

∂⎧
= − +⎪∂⎪

⎨
∂⎪ = − +

⎪ ∂⎩

 (8)

Then, according to the stochastic gradient descent

algorithm, the parameters must move along the

steepest descent direction, leading to formula 9.

()

()

uk uk ik uk

if if uk ik

p p q p

q q p q

β λ

β λ

= + −⎧
⎨

= + −⎩
 (9)

In the formula, β is the learning rate, obtained by

repeated experiments. When the cost function

converges to a stable value, the iteration ends and the P

and Q matrix are generated. There are many methods

to initialize the P and Q matrix, generally by filling the

two matrices with a small range of random numbers.

Many experiments showed that it is effective to have

the random number be proportional to 1/ ()sqrt F ,

where F is the number of latent factors.

3 The Hybrid Algorithm based on LFM

and PersonalRank

In general, the mixed modes include: cascade

mixing, weighted mixing, switching mixing, feature

expanding and so on [13].

Cascade mixing means that suppose there is a user-

item predictor r, and for each user-item pair (u, i), a

predicted value is given [14]. Then the next predictor

can be designed on the basis of the former prediction.

The output of the previous predictor can be the input of

the latter predictor so as to increase the accuracy of the

prediction.

The weighted mixing mode is that suppose there are

n different predictors {r1, r2, r3, …, rn}, and the

simplest weighted method is to use linear weighting

[15]. It is that the final predictor r is the linear weight

of the n predictors, and the specific weight value of

each predictor is obtained by repeated testing with test

data so as to achieve the best recommendation results.

Switching Mixing: For different situations, the

recommendation system may adopt different strategies

[16]. Switching mixing can select a more suitable

predictor by changing models according to the

different circumstances.

Feature expanding is putting the information of

characteristics generated by a recommendation

algorithm into another algorithm to act as the input of

the feature [17]. There are also methods for

combinations of the features: assembling the features

from different sources of recommendation, and

applying them into another recommendation algorithm.

In the above-mentioned several methods, the

cascade mixing mode is suitable for the predictor with

depth structure, and weighted mixing as well as

switching mixing is more suitable for the predictor

with breadth structure. In this paper, we propose a

recommendation algorithm that combines the

expansion of latent factor feature and cascading with

PersonalRank algorithm to improve the accuracy of

recommendation.

This paper designs a hybrid algorithm based on

LFM and PersonalRank, and adopts a cascade mixing

approach with feature expanding, as shown in Figure 2.

922 Journal of Internet Technology Volume 19 (2018) No.3

First, it predicts users’ rating for items which have not

been scored by using LFM, filling in the ratings matrix

with predictive ratings greater than a certain threshold.

Next, it builds the graphical model of users and items,

using the PersonalRank algorithm to compute the rank

value of each item for each user. Finally, top-N is

recommended.

Figure 2. The structure of the hybrid algorithm based

on LFM and PersonalRank

3.1 Sparse Matrix Filling

In the recommendation system, the number of users

and commodities is very large, but the number of

users’ average browsing and scoring is relatively fewer.

The sparsity of rating data cannot accurately analyze

the user’s preferences, and this can seriously influence

the performance of the algorithm. Although it is

essentially impossible to solve, there are strategies to

alleviate the problem to some extent. One strategy is

filling in values based on prediction, such as filling in a

fixed default value or average value, or forecasting by

BP neural network, naive Bayesian classification, or

predicting based on the content. However, this method

is time-consuming and calculation-intensive, and the

filling value itself may generate error that will lower

the recommended quality. Another approach is

dimensionality reduction technology, including

singular value decomposition (SVD) [18-19] and

principal component analysis [20].

In this paper, LFM is used by predicting score to fill

in the sparse matrix. To do this, LFM digs out the

hidden factor of users and items fully by data set,

rather than by explicit features. This allows mining of

the characteristics of the unexplained, making the

granularity of characteristics finer and the dimensions

more broad so that it predicts the score more accurately.

The relationship between users and objects are

divided into strong and weak associations. The strong

correlation is that the user has a rating behavior. The

weak association is that the predicted score by LFM is

greater than a predefined threshold r. A sparse matrix

is filled with weakly connected users and items. Weak

correlation shows that the users may have more

preference for this item.

3.2 Establishment of a Graphical Model

The relationship between a user and an item can be

described as a structure of the graph model, G= (V, E),

where V represents a node set and E represents an edge

set. Users and items are denoted by nodes and the

connection between them is represented as a side. The

weighted undirected graph is built, and the greater the

weight of the edge is, the closer the shared relationship

between the two nodes has. The PersonalRank

algorithm based on random walk can calculate the

relationship between the two nodes. The graphical

model is established as shown in Figure 3. The left

shows the graphical model for the data of user with

items recorded by the score, and the right is modeled

using LFM to add edges. The corresponding adjacency

matrix is given in Figure 4. The weight between the

user and the item node is set to the score or the

prediction score.

Figure 3. Using LFM to add edges

Figure 4. Adjacency matrix

3.3 Implementation of PersonalRank into the

Graphical Model

In the hybrid algorithm, the iterative formula of the

original PersonalRank is as shown in formula 10.

 (1) ()

0(1)t t

r r Srα α
+

= − + (10)

In the formula, S is the normalized adjacency matrix

of the graph, which is derived from A. The edge

weights of the user’s rating for the item are defined and

include the prediction score by LFM. A was defined as

Hybrid Recommendation Algorithm Based on Latent Factor Model and PersonalRank 923

the weight, as shown in formula 11.

,

actual or prediction score
() ,

0 otherwise
ij i j V ij

i, j E
A a a

∈

∈⎧
= = ⎨

⎩

 ()
(11)

The matrix A is symmetric and aij represents the

relationship between node i and j. If there is aij>aij’,

then the relationship between i and j is closer than the

relationship between i and j’.

In the implementation, r(0) represents the initial

distribution of nodes on the graph, all set to 1. If we

want to recommend items for user i, node i will be set

as the starting node. Here r0

is a vector in which the

element corresponding to the starting node is set to 1

and α is the probability. Through a number of

iterations, each node will reach a stable value and then

the nodes will be sorted by their stable value. The

larger the value is, the more likely it is to match the

target user.

4 Experiments and Performance Analysis

4.1 Data Sets and Evaluation Criteria

The MovieLens 10M data set [21] was used for

testing. To ensure that each user had at least 20 movie

scores, the 10 thousand samples included 84 users and

2976 movies, with sparseness of about 96%, and

the100 or 500 thousand samples included 730 users

and 6373 movies with a sparse degree of 97.85%. After

the 10 thousand, 100 thousand and 500 thousand

samples were extracted from this data set based on

each user’s score for an item in the order of time, the

first 70% data acted as the training set and the latter

30% as the test set.

Since the top-N recommendation will give each user

a recommended list, the precision rate and the recall

rate are used to evaluate the accuracy of the

recommendation. Here, R (U, I) is the set of users U

who were recommended with items I and T (U, I) is the

set of users u who have the actual score of the items.

The accuracy of recommendation results is defined as

shown in formula 12 and the recall rate is defined as

formula 13.

(,)

(,)

(,) (,)

(,)

u i Test

u i Test

R u i T u i

Precision
R u i

∈

∈

∩

=

∑

∑
 (12)

(,)

(,)

(,) (,)

(,)

u i Test

u i Test

R u i T u i

Recall
T u i

∈

∈

∩

=

∑

∑
 (13)

4.2 The Experimental Results Comparison

Two algorithms for top-N recommendation were

tested. The first experiment using PersonalRank(PR)

for the 10 thousand, 100 thousand and 500 thousand

data sets was performed as follows. First, forecast the

scores for the films without scores for each user. Then

perform top-N sorting. Finally, the first N

recommended results were compared with the test set

to obtain the precision rate and recall rate. In the

experiment, β =0.8. The results with average values of

10 times experiments are shown in Table 1 to Table 3.

Table 1. 10 thousand samples by PR

 precision rate recall rate

top5 0.121428 0.016787

top10 0.122619 0.033903

top20 0.101785 0.056287

top30 0.095634 0.079328

Table 2. 100 thousand samples by PR

 precision rate recall rate

top5 0.336986 0.041437

top10 0.290410 0.071421

top20 0.240479 0.118283

top30 0.207031 0.152747

Table 3. 500 thousand samples by PR

 precision rate recall rate

top5 0.539523 0.096463

top10 0.489295 0.153642

top20 0.446483 0.180564

top30 0.369804 0.246687

The second experiment used the hybrid algorithm

based on LFM and PersonalRank (LFM+PR). For the

three samples, the prediction scores greater than 4 were

filled in the user - item rating matrix. In the experiment,

α=0.02, λ=0.01, β =0.8. The results are average values

of 10 times experiments. The top-N recommended

results are shown in Table 4 to Table 6.

Table 4. 10 thousand samples by LFM+PR

 precision rate recall rate

top5 0.132812 0.017087

top10 0.130543 0.034076

top20 0.110711 0.057612

top30 0.106001 0.080209

Table 5. 100 thousand samples by LFM+PR

 precision rate recall rate

top5 0.359093 0.058449

top10 0.308410 0.087654

top20 0.259843 0.123039

top30 0.228742 0.165493

Table 6. 500 thousand samples by LFM+PR

 precision rate recall rate

top5 0.639297 0.179622

top10 0.567234 0.190234

top20 0.527890 0.239783

top30 0.398353 0.280762

924 Journal of Internet Technology Volume 19 (2018) No.3

It can be seen from Figure 5 to Figure 10 that using

LFM to get the score filling sparse matrix improved the

accuracy of the prediction score. On average, the

precision rate increased by 10% and the recall rate

increased by 19%.

5 10 20 30

0.09

0.10

0.11

0.12

0.13

p
re

c
is

io
n
 r

a
te

top-N

 PersonalRank

 LFM+PersonalRank

Figure 5. Comparison of the precision rate by

LFM+PR and PR in 10 thousand samples

5 10 20 30

0.18

0.21

0.24

0.27

0.30

0.33

0.36

p
re

c
is

io
n

 r
a

te

top-N

 PersonalRank

 LFM+PersonalRank

Figure 6. Comparison of the precision rate by

LFM+PR and PR in 100 thousand samples

5 10 20 30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
 PersonalRank

 LFM+PersonalRank

p
re

c
is

io
n
 r
a
te

top-N

Figure 7. Comparison of the precision rate by

LFM+PR and PR in 500 thousand samples

5 10 20 30

0.02

0.04

0.06

0.08

re
c
a

ll
 r

a
te

top-N

 PersonalRank

 LFM+PersonalRank

Figure 8. Comparison of the recall rate of LFM+PR

and PR in 10 thousand samples

5 10 20 30

0.04

0.06

0.08

0.10

0.12

0.14

0.16

re
c
a

ll
 r

a
te

top-N

 PersonalRank

 LFM+PersonalRank

Figure 9. Comparison of the recall rate of LFM+PR

and PR in 100 thousand samples

5 10 20 30

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

 PersonalRank

 LFM+PersonalRank

top-N

re
c
a
ll
 r
a
te

Figure 10. Comparison of the recall rate of LFM+PR

and PR in 500 thousand samples

5 Conclusions

In this paper, a new hybrid recommendation

algorithm is proposed that combines LFM and the

Hybrid Recommendation Algorithm Based on Latent Factor Model and PersonalRank 925

PersonalRank algorithm based on a bipartite graph.

The algorithm can improve the accuracy of

recommendations by first filling the sparse matrix

before using the PersonalRank algorithm. Compared

with other methods, this paper adopts the prediction

score by LFM to fill the sparse matrix, which

completely uses the data set to dig out the hidden

factors of users and items, rather than using the explicit

features. This approach helps discovering the

unexplained features, which refines the granularity and

broadens the dimensions of features. Experimental

results show that filling the sparse matrix using LFM

can effectively reduce the impact of data sparsity so as

to predict the score more accurately in top-N

recommendation.

Acknowledgements

This work has been supported by the National Key

Research and Development Program of China (Grant

No. 2016YFB0800700, 2017YFB1400902), the

National Natural Science Foundation of China (Grant

No. 61772070, 61672508, U1636213) and Beijing

Higher Education Young Elite Teacher Project (Grant

No. YETP1169).

References

[1] D.-V Daele, A. Kimmig, L.-D Raedt, PageRank, ProPPR, and

Stochastic Logic Programs, 24th International Conference on

Inductive Logic Programming, Nancy, France, 2015, pp. 168-

180.

[2] F. Tian, Y. Chen, X. Wang, T. Lan, Q. Zheng, K.-M. Chao,

Common Features Based Volunteer and Voluntary Activity

Recommendation Algorithm, 2015 IEEE 12th International

Conference on E-Business Engineering (Icebe), Beijing,

China, 2015, pp. 43-47.

[3] X. Zhao, Z. Niu, K. Wang, K. Niu, Z. Liu, Improving Top- N

Recommendation Performance Using Missing Data,

Mathematical Problems in Engineering, Vol. 2015, pp. 1-13,

September, 2015.

[4] H. Jia, S. Ding, M. Du, Y. Xue, Approximate Normalized

Cuts without Eigen-decomposition, Information Sciences,

Vol. 374, pp. 135-150, December, 2016.

[5] D. Yu, Y. Liu, Y. Xu, Y. Yin, Personalized QoS Prediction

for Web Services using Latent Factor Models, 2014 IEEE

International Conference on Services Computing (Scc 2014),

Anchorage, AK, 2014, pp. 107-114.

[6] C.-L. Liu, X.-W. Wu, Large-scale Recommender System with

Compact Latent Factor Model, Expert Systems with

Applications, Vol. 64, pp. 467-475, December, 2016.

[7] H.-H. Qiu, Y. Liu, Z.-J. Zhang, G.-X. Luo, An Improved

Collaborative Filtering Recommendation Algorithm for

Microblog Based on Community Detection, Tenth

International Conference on Intelligent Information Hiding

and Multimedia Signal Processing, Kitakyushu, Japan, 2014,

pp. 876-879.

[8] T. Zhao, R. Xiao, C. Sun, H. Chen, Y. Li, H. Li, Personalized

Recommendation Algorithm Integrating Roulette Walk and

Combined Time Effect, Journal of Computer Applications,

Vol. 34, No. 4, pp. 1114-1117, April, 2014.

[9] B. Shen, B.-W. Hu, H. Zhang, Method for the Analysis of the

Preferences of Network Users, IET Networks, Vol. 5, No. 1,

pp. 8-12, January, 2016.

[10] L. Qiu, S. Gao, W. Cheng, J. Guo, Aspect-based Latent

Factor Model by Integrating Ratings and Reviews for

Recommender System, Knowledge-Based Systems, Vol. 110,

pp. 233-243, October, 2016.

[11] H. Lai, Y. Pan, Y. Tang, N. Liu, Efficient Gradient Descent

Algorithm for Sparse Models with Application in Learning-

to-rank, Knowledge-Based Systems, Vol. 49, pp. 190-198,

September, 2013.

[12] L. Yan, Y.-J. Li, X. Yang, W. Gao, Gradient Descent

Technology for Sparse Vector Learning in Ontology

Algorithms, Journal of Discrete Mathematical Sciences &

Cryptography, Vol. 19, No. 3, pp. 753-775, July, 2016.

[13] J. Chen, J. Li, J. Xiao, Y. Tang, H. Fu, A Hybrid

Collaborative Filtering Model: RSVD Meets Weighted-

Network Based Inference, Journal of Internet Technology,

Vol. 17, No. 6, pp. 1221-1233, November, 2016.

[14] M. Salehi, I.-N. Kamalabadi, Hybrid Recommendation

Approach for Learning Material based on Sequential Pattern

of the Accessed Material and the Learner’s Preference Tree,

Knowledge-Based Systems, Vol. 48, pp. 57-69, August, 2013.

[15] X. She, Y. Cai, L. Dong, New Recommendation Algorithm

based on Multi-objective Optimization, Journal of Computer

Applications, Vol. 35, No. 1, pp. 162-166, January, 2015.

[16] V.-N. Zhao, M. Moh, T.-S. Moh, Contextual-aware Hybrid

Recommender System for Mixed Cold-start Problems in

Privacy Protection, 2016 IEEE 2nd International Conference

on Big Data Security on Cloud (BigDataSecurity), New York,

NY, 2016, pp. 400-405.

[17] M. Sattari, I.-H. Toroslu, P. Karagoz, P. Symeonidis, Y.

Manolopoulos, Extended Feature Combination Model for

Recommendations in Location-based Mobile Services,

Knowledge and Information Systems, Vol. 44, No. 3, pp. 629-

661, September, 2015.

[18] T.-M. Chang, W.-F. Hsiao, W.-L. Chang, An Ordinal

Regression Model with SVD Hebbian Learning for

Collaborative Recommendation, Journal of Information

Science & Engineering, Vol. 30, No. 2, pp. 387-401, March,

2014.

[19] Q. Ba, X. Li, Z. Bai, Clustering Collaborative Filtering

Recommendation System Based on SVD Algorithm,

Proceedings of 2013 IEEE 4th International Conference on

Software Engineering and Service Science (Icsess), Beijing,

China, 2012, pp. 963-967.

[20] N. Evangelopoulos, X. Zhang, V.-R. Prybutok, Latent

Semantic Analysis: five methodological recommendations,

European Journal of Information Systems, Vol. 21, No. 1, pp.

70-86, January, 2012.

[21] GroupLens, MovieLens, http://grouplens.org/datasets/movielens/.

926 Journal of Internet Technology Volume 19 (2018) No.3

Biographies

Jingjing Hu received the Ph.D.

degree in computer science from

Beijing Institute of Technology, China.

She is currently a lecturer in the

School of Software of Beijing

Institute of Technology. Her research

interests are in the areas of service

computing, multi-agent systems, and parallel

computing.

Linzhu Liu received his BEng degree

from the School of Computer Science

and Technology, Beijing Information

Science and Technology University in

2014 and received his M.S. Degree in

the School of Software, Beijing

Institute ofTechnology in 2016. Her

current research interests include machine learning,

parallel computing and software engineering.

Changyou Zhang received his Ph.D

degree in Beijing Institute of

Technology, Beijing, China. He is a

senior engineer and professor in

Institute of Software, Chinese

Academy of Science. His current

research interests include intelligent

information network, computer supported cooperative

work, and parallel programming

Jialing He is a master student in the

School of Software, Beijing Institute

of Technology, China. She received

her BEng degree from Beijing

Institute of Technology in 2016. Her

research interests include cloud

security, data mining and software

engineering.

Changzhen Hu received the Ph.D.

degree from Beijing Institute of

Technology. He is currently a

professor in the School of Software,

Beijing Institute of Technology. His

current research interest is cyberspace

security and web intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

