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Abstract 

To promote the development of future social networks, 

an efficient recommendation algorithm is needed. Due to 

high-dimensional structures and missing rating 

information of the user-item matrix caused by sparse data, 

the direct use of a single recommendation algorithm is 

inefficient. In order to improve the accuracy of 

personalized recommendations, we propose an improved 

hybrid recommendation algorithm based on the latent 

factor model (LFM) and the PersonalRank algorithm, 

which adopts a cascade mixing approach with features 

expanding. First, it fills in a sparse matrix using LFM for 

the users who did not evaluate for the items. Next, it sets 

up a graph model and uses the PersonalRank algorithm in 

the filling matrix. Finally, it computes PR values of each 

user for items and implements sorting. The efficiency of 

the hybrid algorithm was verified on the MovieLens 

dataset. Compared with the PersonalRank algorithm, it 

can improve the accuracy rate and the recall rate of top-N 

recommendations. 

Keywords: Latent factor model, PersonalRank, Hybrid 

recommendation algorithm 

1 Introduction 

PersonalRank originates from the PageRank 

algorithm, and PageRank is applied to the popular 

search engine Google [1-2]. It is a personalized 

recommendation algorithm based on graphing, and can 

transform the personalized recommendation problem 

into node selection in a graph. However, owing to data 

sparseness of the user-item rating matrix, use of this 

algorithm alone will predict ratings with low accuracy. 

Instead, it is necessary to use one of several effective 

strategies to fill in the sparse matrix [3-4]. 

Latent factor model (LFM) is a kind of algebraic 

model and calculation theory used for information 

retrieval and knowledge acquisition [5]. The model 

was proposed in the field of text mining earliest, which 

was used to analyze a large number of text sets 

obtained by statistical calculating and extract the latent 

semantic structure between words and words. The 

latent semantic structure representing words and texts 

can be used to remove the relevance between words 

and simplify text vectors so as to achieve the 

dimension reduction. 

LFM usually creates a scoring matrix, or a user-item 

matrix. In this matrix, each row element corresponds to 

a user; each column element corresponds to an item; 

and each record indicates a user’s rating of an item [6]. 

From the view of matrix decomposition, LFM 

decomposes the user’s scoring matrix into two low 

dimensional matrices, which aims at approximately 

representing the scoring matrix. The two low 

dimensional matrices are learned by training the data 

and optimizing the loss function. The product of the 

two lower dimensional matrices can be used to predict 

the target user’s ratings of the items. In recent years, 

LFM has obtained good application effect in top-N 

recommendations. 

In an actually application system, it is hard to reach 

high precision rate for a single recommendation 

algorithm, so a variety of recommendation systems 

utilize mixed recommendation algorithms to improve 

the accuracy. 

The main purpose of using hybrid recommendation 

algorithm is to alleviate the flaws of each 

recommendation algorithm itself. For example, the 

most traditional hybrid recommendation system takes 

use of a recommendation algorithm based on content 

recommending and collaborative filtering-based 

recommending [7]. The hybrid algorithm not only 

solves the problem of collaborative filtering algorithm 

about cold start, but also solves the problem of sparsity 

in the scoring matrix. And it also resolves the problem 

that content recommendation result is too single. It not 

only overcomes the limitation of each recommendation 

algorithm, but also, to a certain extent, improves the 

accuracy of the recommending. Therefore, it is the key 

point of this paper to implement an effective hybrid 

recommendation algorithm. Specifically, LFM and 

PersonalRank algorithm are mixed to obtain higher 

recommendation precision. 
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The structure of the paper is organized as follows. 

Section 1 illustrates the background and fundamental 

principles of recommendation algorithms. Section 2 

describes the detailed algorithm of LFM and 

PersonalRank. Section 3 proposes a hybrid 

personalized recommendation algorithm based on LFM 

and PersonalRank. The efficiency of recommendation 

is verified in Section 4, and the final section presents 

the conclusions. 

2 The Algorithm Basis 

2.1 PersonalRank 

PersonalRank is a graph-based recommendation 

algorithm that transforms the recommendation problem 

into node selection in graph [8-9]. Using a graph to 

present the rating behavior for users, the rating 

behavior can be seen as a series of tuples where each 

tuple ( , )u i  indicates the rating of user u for item i. 

Therefore, the data can be expressed by a bipartite 

graph. 

G(V, E) represents a bipartite graph for user-item, 

where 
U I

V V V= ∪  consists of the nodes for a set of 

users and items. For each tuple ( , )u i  in the data set, 

the graph has a set of edges ( , )
u i

e v v , where 
u U
v V∈  is 

the corresponding node of user u, and 
i I
v V∈  is the 

corresponding node of item i. The bipartite graph is 

shown in Figure 1, in which the circle represents the 

user and the box indicates the item. It can be seen that 

there are records of past scoring for user A on items a 

and b, user B on items b and d, user C on item a, and 

user D on items a, c, and d. 

 

Figure 1. The user - item bipartite graph model 

The basis of the PersonalRank algorithm is that the 

user u walks randomly from the starting node vu. When 

wandering to a random node, the user first decides 

whether to continue walking or to terminate the walk 

and restart from the starting node vu according to the 

probability 
( )

( )
( ) (1 )

( )
i

j in i

PR j
PR i r

out i
α α

∈

= − + ∑ . The 

“in(i)” indicates the set pointing to i and the “out(i)” is 

the set that i is pointing to. If it needs to continue, a 

node will be selected to be the next node according to 

the uniform distribution randomly, and in this manner 

the user walks to the end. The probability of accessing 

each item node will converge to a number that is the 

final access probability for that item node [8]. This is 

shown in formula 1, where PR denotes the access 

probability of node i. 

 
( )

( )
( ) (1 )

( )
i

j in i

PR j
PR i r

out i
α α

∈

= − + ∑ ,
1,

0,
i

i u
r

i u

=⎧
= ⎨

≠⎩
 (1) 

From the formula (1), the main difference between 

PersonalRank and PageRank algorithm is that 

PersonalRank algorithm replaces 1/N
 
with 

i
r , where u 

represents the target user, which means that the 

probability from different points is different, so the 

calculated value is the correlation degree of user u 

relativity that user u relating to all the points. 

The recommendation algorithm based on graph 

model can establish the relationship between users and 

objects better and more intuitively, and get the top-N 

recommendation list more naturally. However, because 

the algorithm requires continuous iteration on the 

binary graph to make the PR values of each node 

convergent in the graph. The time complexity of the 

algorithm is very high. 

Therefore, PersonalRank is transformed into the 

form of matrix to take the place of the iterative method 

as shown in formula 2. M is the transition probability 

matrix of the binary graph, i.e. 

 
0

0

A
M

B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦  

(2) 

In the matrix, n m

A R
×

∈ , n is the number of users, 

and m is the number of items. If user i has connection 

with items j, then the value of Rij is assigned to the 

reciprocal of the degree of user node. In the matrix of 
m n

B R
×

∈ , if there is correlation between user i and 

item j, then the value of Rij is assigned to the reciprocal 

of the degree of item node. 

Then, the iterative formula 1 can be transformed into 

formula 3. 

 
0

(1 ) T
r r M rα α= − +  (3) 

Where 
0

0

V
r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, V is an n-dimensional vector, and 

for the user i, the values in the i-th row of the vector V 

is 1 and the values in other positions are 0. 

The final solution is shown as in formula 4. 

 1

0
(1 )(1 )T

r M rα α
−

= − −  (4) 

So it only needs to calculate 
1(1 )T

Mα
−

−  once, but it 

needs to calculate the inverse matrix of sparse matrix 

rapidly. 

2.2 Latent Factor Model 

Latent factor model (LFM) builds on the 

relationship between users’ interests and items to be 
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recommended by extracting latent features [10]. From 

the perspective of matrix factorization, two lower-

dimensional matrices are divided by LFM. Learning 

the two matrices requires optimizing the cost function. 

Then, the two matrices can predict the scores for 

different items evaluated by target users. 

Formula 5 is shown to calculate the interest of items 

for users. 

 
,1 ,

K

UI U I U kk k I
R P Q P Q

=

= =∑  (5) 

The matrix R is the rating matrix, where value rij 

represents the score of itemj to useri. For a user, when 

the interest measure of all items is calculated, all items 

can be sorted to make additional recommendations. 

LFM algorithms extract several themes from a data set 

as a bridge to connect the users and items. Matrix R 

represents the product of the matrix P and Q. 

P is a user-class matrix, where pij represents the 

interest measure of classj for useri. Q is a class-item 

matrix, where qij represents the weight of classi for 

itemj.  

To calculate the parameter values in the P matrix 

and Q matrix, the common method solves this 

parameter values by an optimization with cost function. 

The gradient descent algorithm is a kind of basic 

method for this optimization [11-12]. 

Learning the P and Q matrix can use the observed 

value of the training set directly by minimizing RMSE 

(Root Mean Square Error), where the cost function is 

defined as formula 6. 

2

( , ) ( , ) 1

( , ) ( ) ( )
F

ui ui ui uf if

u i Train u i Train f

C p q r r r p q
∈ ∈ =

= − = −∑ ∑ ∑  (6) 

The direct optimization of the cost function may 

lead to over-fitting. Therefore, it is necessary to add the 

regular term
2 2

( )
u i
p qλ + , where λ  is the 

regularization parameter, 0λ ≥ . Thus the formula 7 for 

cost function is obtained. 

 
2 22

( , ) 1

( , ) ( ) ( )
F

ui uf if u i

u i Train f

C p q r p q p qλ

∈ =

= − + +∑ ∑ (7) 

The above cost function in formula 7 defines two 

sets of parameters ufp and ifq , and using the gradient 

descent method first requires computing the partial 

derivative of the cost function. Thus the formula 8 is 

obtained. 

 

2 2

2 2

ik uk

uf

uk ik

if

C
q p

p

C
p q

q

λ

λ

∂⎧
= − +⎪∂⎪

⎨
∂⎪ = − +

⎪ ∂⎩

 (8) 

Then, according to the stochastic gradient descent 

algorithm, the parameters must move along the 

steepest descent direction, leading to formula 9. 

 
( )

( )

uk uk ik uk

if if uk ik

p p q p

q q p q

β λ

β λ

= + −⎧
⎨

= + −⎩
 (9) 

In the formula, β is the learning rate, obtained by 

repeated experiments. When the cost function 

converges to a stable value, the iteration ends and the P 

and Q matrix are generated. There are many methods 

to initialize the P and Q matrix, generally by filling the 

two matrices with a small range of random numbers. 

Many experiments showed that it is effective to have 

the random number be proportional to 1/ ( )sqrt F , 

where F is the number of latent factors. 

3 The Hybrid Algorithm based on LFM 

and PersonalRank 

In general, the mixed modes include: cascade 

mixing, weighted mixing, switching mixing, feature 

expanding and so on [13]. 

Cascade mixing means that suppose there is a user-

item predictor r, and for each user-item pair (u, i), a 

predicted value is given [14]. Then the next predictor 

can be designed on the basis of the former prediction. 

The output of the previous predictor can be the input of 

the latter predictor so as to increase the accuracy of the 

prediction. 

The weighted mixing mode is that suppose there are 

n different predictors {r1, r2, r3, …, rn}, and the 

simplest weighted method is to use linear weighting 

[15]. It is that the final predictor r is the linear weight 

of the n predictors, and the specific weight value of 

each predictor is obtained by repeated testing with test 

data so as to achieve the best recommendation results. 

Switching Mixing: For different situations, the 

recommendation system may adopt different strategies 

[16]. Switching mixing can select a more suitable 

predictor by changing models according to the 

different circumstances. 

Feature expanding is putting the information of 

characteristics generated by a recommendation 

algorithm into another algorithm to act as the input of 

the feature [17]. There are also methods for 

combinations of the features: assembling the features 

from different sources of recommendation, and 

applying them into another recommendation algorithm. 

In the above-mentioned several methods, the 

cascade mixing mode is suitable for the predictor with 

depth structure, and weighted mixing as well as 

switching mixing is more suitable for the predictor 

with breadth structure. In this paper, we propose a 

recommendation algorithm that combines the 

expansion of latent factor feature and cascading with 

PersonalRank algorithm to improve the accuracy of 

recommendation. 

This paper designs a hybrid algorithm based on 

LFM and PersonalRank, and adopts a cascade mixing 

approach with feature expanding, as shown in Figure 2. 
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First, it predicts users’ rating for items which have not 

been scored by using LFM, filling in the ratings matrix 

with predictive ratings greater than a certain threshold. 

Next, it builds the graphical model of users and items, 

using the PersonalRank algorithm to compute the rank 

value of each item for each user. Finally, top-N is 

recommended. 

 

Figure 2. The structure of the hybrid algorithm based 

on LFM and PersonalRank 

3.1 Sparse Matrix Filling 

In the recommendation system, the number of users 

and commodities is very large, but the number of 

users’ average browsing and scoring is relatively fewer. 

The sparsity of rating data cannot accurately analyze 

the user’s preferences, and this can seriously influence 

the performance of the algorithm. Although it is 

essentially impossible to solve, there are strategies to 

alleviate the problem to some extent. One strategy is 

filling in values based on prediction, such as filling in a 

fixed default value or average value, or forecasting by 

BP neural network, naive Bayesian classification, or 

predicting based on the content. However, this method 

is time-consuming and calculation-intensive, and the 

filling value itself may generate error that will lower 

the recommended quality. Another approach is 

dimensionality reduction technology, including 

singular value decomposition (SVD) [18-19] and 

principal component analysis [20]. 

In this paper, LFM is used by predicting score to fill 

in the sparse matrix. To do this, LFM digs out the 

hidden factor of users and items fully by data set, 

rather than by explicit features. This allows mining of 

the characteristics of the unexplained, making the 

granularity of characteristics finer and the dimensions 

more broad so that it predicts the score more accurately. 

The relationship between users and objects are 

divided into strong and weak associations. The strong 

correlation is that the user has a rating behavior. The 

weak association is that the predicted score by LFM is 

greater than a predefined threshold r. A sparse matrix 

is filled with weakly connected users and items. Weak 

correlation shows that the users may have more 

preference for this item. 

3.2 Establishment of a Graphical Model 

The relationship between a user and an item can be 

described as a structure of the graph model, G= (V, E), 

where V represents a node set and E represents an edge 

set. Users and items are denoted by nodes and the 

connection between them is represented as a side. The 

weighted undirected graph is built, and the greater the 

weight of the edge is, the closer the shared relationship 

between the two nodes has. The PersonalRank 

algorithm based on random walk can calculate the 

relationship between the two nodes. The graphical 

model is established as shown in Figure 3. The left 

shows the graphical model for the data of user with 

items recorded by the score, and the right is modeled 

using LFM to add edges. The corresponding adjacency 

matrix is given in Figure 4. The weight between the 

user and the item node is set to the score or the 

prediction score. 

 

Figure 3. Using LFM to add edges 

 

Figure 4. Adjacency matrix 

3.3 Implementation of PersonalRank into the 

Graphical Model 

In the hybrid algorithm, the iterative formula of the 

original PersonalRank is as shown in formula 10. 

 ( 1) ( )

0(1 )t t

r r Srα α
+

= − +  (10) 

In the formula, S is the normalized adjacency matrix 

of the graph, which is derived from A. The edge 

weights of the user’s rating for the item are defined and 

include the prediction score by LFM. A was defined as 
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the weight, as shown in formula 11. 

,

actual or prediction score
( ) ,

0                                  otherwise
ij i j V ij

i, j E
A a a

∈

∈⎧
= = ⎨

⎩

 ( )
(11) 

The matrix A is symmetric and aij represents the 

relationship between node i and j. If there is aij>aij’, 

then the relationship between i and j is closer than the 

relationship between i and j’. 

In the implementation, r(0) represents the initial 

distribution of nodes on the graph, all set to 1. If we 

want to recommend items for user i, node i will be set 

as the starting node. Here r0 

is a vector in which the 

element corresponding to the starting node is set to 1 

and α  is the probability. Through a number of 

iterations, each node will reach a stable value and then 

the nodes will be sorted by their stable value. The 

larger the value is, the more likely it is to match the 

target user. 

4 Experiments and Performance Analysis 

4.1 Data Sets and Evaluation Criteria 

The MovieLens 10M data set [21] was used for 

testing. To ensure that each user had at least 20 movie 

scores, the 10 thousand samples included 84 users and 

2976 movies, with sparseness of about 96%, and 

the100 or 500 thousand samples included 730 users 

and 6373 movies with a sparse degree of 97.85%. After 

the 10 thousand, 100 thousand and 500 thousand 

samples were extracted from this data set based on 

each user’s score for an item in the order of time, the 

first 70% data acted as the training set and the latter 

30% as the test set. 

Since the top-N recommendation will give each user 

a recommended list, the precision rate and the recall 

rate are used to evaluate the accuracy of the 

recommendation. Here, R (U, I) is the set of users U 

who were recommended with items I and T (U, I) is the 

set of users u who have the actual score of the items. 

The accuracy of recommendation results is defined as 

shown in formula 12 and the recall rate is defined as 

formula 13. 

 
( , )

( , )

( , ) ( , )

( , )

u i Test

u i Test

R u i T u i

Precision
R u i

∈

∈

∩

=

∑

∑
 (12) 

 
( , )

( , )

( , ) ( , )

( , )

u i Test

u i Test

R u i T u i
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T u i

∈

∈

∩

=

∑

∑
 (13) 

4.2 The Experimental Results Comparison 

Two algorithms for top-N recommendation were 

tested. The first experiment using PersonalRank(PR) 

for the 10 thousand, 100 thousand and 500 thousand 

data sets was performed as follows. First, forecast the 

scores for the films without scores for each user. Then 

perform top-N sorting. Finally, the first N 

recommended results were compared with the test set 

to obtain the precision rate and recall rate. In the 

experiment, β =0.8. The results with average values of 

10 times experiments are shown in Table 1 to Table 3. 

Table 1. 10 thousand samples by PR 

 precision rate recall rate 

top5 0.121428 0.016787 

top10 0.122619 0.033903 

top20 0.101785 0.056287 

top30 0.095634 0.079328 

Table 2. 100 thousand samples by PR 

 precision rate recall rate 

top5 0.336986 0.041437 

top10 0.290410 0.071421 

top20 0.240479 0.118283 

top30 0.207031 0.152747 

Table 3. 500 thousand samples by PR 

 precision rate recall rate 

top5 0.539523 0.096463 

top10 0.489295 0.153642 

top20  0.446483  0.180564 

top30 0.369804 0.246687 

 

The second experiment used the hybrid algorithm 

based on LFM and PersonalRank (LFM+PR). For the 

three samples, the prediction scores greater than 4 were 

filled in the user - item rating matrix. In the experiment, 

α=0.02, λ=0.01, β =0.8. The results are average values 

of 10 times experiments. The top-N recommended 

results are shown in Table 4 to Table 6. 

Table 4. 10 thousand samples by LFM+PR 

 precision rate recall rate 

top5 0.132812 0.017087 

top10 0.130543 0.034076 

top20 0.110711 0.057612 

top30 0.106001 0.080209 

Table 5. 100 thousand samples by LFM+PR 

 precision rate recall rate 

top5 0.359093 0.058449 

top10 0.308410 0.087654 

top20 0.259843 0.123039 

top30 0.228742 0.165493 

Table 6. 500 thousand samples by LFM+PR 

 precision rate recall rate 

top5 0.639297 0.179622 

top10 0.567234 0.190234 

top20 0.527890 0.239783 

top30 0.398353 0.280762 
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It can be seen from Figure 5 to Figure 10 that using 

LFM to get the score filling sparse matrix improved the 

accuracy of the prediction score. On average, the 

precision rate increased by 10% and the recall rate 

increased by 19%. 
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Figure 5. Comparison of the precision rate by 

LFM+PR and PR in 10 thousand samples 
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Figure 6. Comparison of the precision rate by 

LFM+PR and PR in 100 thousand samples 
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Figure 7. Comparison of the precision rate by 

LFM+PR and PR in 500 thousand samples 
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Figure 8. Comparison of the recall rate of LFM+PR 

and PR in 10 thousand samples 
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Figure 9. Comparison of the recall rate of LFM+PR 

and PR in 100 thousand samples 
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Figure 10. Comparison of the recall rate of LFM+PR 

and PR in 500 thousand samples 

5 Conclusions 

In this paper, a new hybrid recommendation 

algorithm is proposed that combines LFM and the 
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PersonalRank algorithm based on a bipartite graph. 

The algorithm can improve the accuracy of 

recommendations by first filling the sparse matrix 

before using the PersonalRank algorithm. Compared 

with other methods, this paper adopts the prediction 

score by LFM to fill the sparse matrix, which 

completely uses the data set to dig out the hidden 

factors of users and items, rather than using the explicit 

features. This approach helps discovering the 

unexplained features, which refines the granularity and 

broadens the dimensions of features. Experimental 

results show that filling the sparse matrix using LFM 

can effectively reduce the impact of data sparsity so as 

to predict the score more accurately in top-N 

recommendation. 
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