
Intelligent Agents in Securing Internet 753

Intelligent Agents in Securing Internet

S. Sarika, Paul Varghese1*

1 Department of Computer Science, Bharathiar University, India

sarika.anand08@gmail.com, vp.itcusat@gmail.com

*Corresponding Author: S. Sarika; E-mail: sarika.anand08@gmail.com

DOI: 10.3966/160792642018051903012

Abstract

Internet phishing has become one of the most prevalent

problems of online security. Phishing takes advantage of

the user’s trust and use social engineering techniques to

deceive them. As browsers have become a major

platform for attacks to take place, a greater focus should

be given for securing web services in this perspective.

This paper discusses a framework to resist phishing

attacks utilizing the power of intelligent agents. The main

focus is on a browser based attack called tabnabbing

which executes in inactive browser tabs. The proposed

method uses agents in three levels to monitor browser

tabs, at regular intervals and warn the user at the earliest.

This approach excellently protects user against

Tabnabbing, URL obfuscations and malicious links.

Results show that the proposed method outperforms the

state of the art phishing detection methods and achieves

an accuracy of 97.3%.

Keywords: Distributed software agents, Multi agent

systems, Tabnabbing, Antiphishing

1 Introduction

Phishing [1] is an art of deception wherein secure

websites are so perfectly impersonated that even

cautious users are tricked. Through the past decades,

the number of victims has increased exponentially as

phishers improvise tactics by exploiting loopholes in

software.

Recently, the web has become client-centric, and

web browsers, tools of deliverance of information.

Browsers display the web pages using an underlying

web protocol called Hyper Text Transfer Protocol [2].

Eventhough http allows for the quick and easy

transmission of information, it is not secure enough as

the conversation between servers and clients can be

eavesdropped in to. In order to ensure secure

transactions, websites use https (secure http) rather

than http in its address. However, even if a site address

displays https, it might still be a phishing web page as

there are spoofing techniques [3] to fake https protocol.

Modern browsers are significantly more secure than

before. Even then, the browsers are abused after

monitoring the user’s browsing habits. Some of the

known web browser security risks include social

engineering [4], clickjacking, session hijacking [5] and

cross domain vulnerabilities [6-7] like cross site

scripting, cross site request forgery etc. These

techniques run the gamut from simple eavesdropping,

through theft of identity and personal information, to

financial losses. As for the fixed world, there are

several counter measures based on various methods

such as the ones presented in [8-10].

The power of artificial intelligence can be utilized

for a large number of applications and environments.

The computational agents with intelligent behavior can

be made available on the internet for making internet

browsing secure. This paper focuses on a browser-

based attack called tabnabbing and a novel approach

for its parallel detection in multiple tabs using

distributed software agents. The name ‘tabnabbing

attack’ [11] was coined in early 2010 by Aza Raskin,

creative lead of Mozilla Firefox. The attack is simple

to implement and silently tracks the victims. A user has

a bunch of open tabs and as he navigates through them,

phishers set up a counterfeited web site which looks

exactly like the legitimate one and load the inactive

tabs with the fake page. When the user switches back

to the tab, it appears to be a site frequently used by the

user and prompts the user to enter his credentials

convincing the user that the site is authentic. As the

user does not remember how each tab looked like

before tab switch, he will give his credentials to the

honest looking page and is trapped. Unlike other

attacks, this deception technique happens on the behind

and is likely to betray even the most incredulous

persons and is able to change favicon, title, and layout

of a webpage with some other site familiar to the user.

Tabnabbing cannot be avoided by using https instead

of http in web address. The attack can be launched via

scripting support [12], and with the use of HTML

refresh meta tag [13] in predetermined time intervals.

The rest of this paper is structured as follows. Next

section describes related work. Section 3 explains our

proposed method. Section 4 discusses about

implementation followed by experimental results.

Discussion part is included in Section 5 and Section 6

concludes the paper.

754 Journal of Internet Technology Volume 19 (2018) No.3

2 Related Works

There has been a greater focus on the subject of

securing web applications in the perspective of

increasing interest in online security. Research works

have already been conducted in this area describing

various antiphishing approaches. The basic phishing

detection method is list-based approach (blacklist and

whitelist) [14-15]. In blacklist approach, the system

keeps a pre-compiled list of URLs which were found to

be malicious at some point in time. The whitelist based

solution keeps a list of legitimate URLs that prevents

access to phishing sites by URL similarity check. The

list based methods suffer from timely updation of list

as it may become obsolete. In order to solve the

problem of list updation, different heuristic methods

[15-16] are proposed which uses characteristics of the

webpages and URL to identify phishing sites. Heuristic

methods often use machine learning methods for

classification as explained in [17-19]. However,

heuristic and machine learning techniques might fail

when attackers host phishing attacks on servers and

also they cannot detect the phishing sites designed

fully with images. Chen has explained LinkGuard [20],

a character based antiphishing approach which utilizes

the generic characteristics of the hyperlinks in phishing

attacks. This technique is inefficient as it may create

more false positives. Zhang et al. proposed a content

based solution, CANTINA [21] which uses TF-IDF

information retrieval algorithm for phishing detection.

The adversaries can evade this technique by using

images and invisible text in webpages. GoldPhish [22]

is another content based approach which captures the

image of webpage and uses optical character

recognition to convert the image to text. This method

provides zero day phishing but vulnerable to attacks on

Google’s PageRank algorithm and Google’s search

service. Another method SpoofGuard [3], extracts

phishing signatures via suspicious URLs, images, links,

and passwords in a webpage. The approach is easy to

evade as it cannot handle images with modifications.

The aforementioned approaches focus on old types of

phishing attacks. Tabnabbing is a modern browser

security threat and its current management modalities

are briefly explained below.

NoScript [23] and YesScript [24] are Firefox add-

ons, preventing websites from running JavaScript, Java,

Flash or other plugins. But they do not provide

protection in other browsers. NoTabNab [25] is a

Firefox add-on proposed by Unlu and Bicakci which

protects users from tabnabbing attack by using the

positioning of HTML elements of a webpage. The key

problem in this technique is related to resizing the

browser, as only some web pages are designed to re-

layout themselves.

Suri et al. has presented a signature based detection

mechanism [26] to deal with tabnabbing. The method

defines a set of rules to scrutinize vulnerable

JavaScript code. But this paper focuses only on iframe

elements which is not always necessary for a

tabnabbing attack.

Tab-Shots [27] is a browser extension which uses

visual appearance of a webpage to detect tabnabbing.

The method works by remembering what each tab

looked like, whenever a tab is changed by recording

the favicon and screenshots of the presently focused

tab at regular time periods. The main limitation of this

technique is the difficulty in detecting small changes in

a page.

TabsGuard [28] combines heuristic based metrics

and data mining techniques to detect tabnabbing. The

approach uses five heuristic-based metrics to measure

the degree of changes made to the tree representation

of each webpage whenever a tab loses focus.

Existing anti-tabnabbing methods detect the layout

change and warn the user only when the tab is on focus

after being nabbed and also they focus mainly on the

change in page layout, title and favicon but not much

attention is given to change in URL. Our approach is

similar to the method proposed by Fahim et al. [28]

where structural features of a webpage are analyzed

but the selected features are different. The proposed

method uses software agents [29] to concurrently

monitor the change in webpage layout at regular

intervals in all the tabs of a browser and alerts the user

during the attack wherein he can act accordingly. The

method also provides a mechanism to monitor

fraudulent URLs and thus combat three types of

phishing attacks simultaneously. The major

contributions of this paper are:

‧ A multiagent based framework that combines

blacklisting and heuristic-based approaches.

‧ An effective mechanism for simultaneous detection

of phishing in multiple tabs.

‧ A security model to protect users from from

tabnabbing attack, URL obfuscations and malicious

links by giving explicit warnings.

3 Multi Agent Based Phishing Detection

Multi Agent based phishing detection is a scientific

approach which needs planning, designing and

deploying multiagents in a platform to protect

webpages from a variety of phishing attacks. The

proposed method is a modular, multi-agent architecture

[30], where the webpage activities are monitored and

controlled by deliberative BDI (Belief, Desire,

Intention) agents [31]. They are able to cooperate and

act on purely dynamic environments like internet and

are able to face complex and real problems like

phishing, even when they have few resources available.

The architecture proposes a new and easier method of

building distributed multi-agent systems. The proposed

system uses the following classes of agents:

Intelligent Agents in Securing Internet 755

－ T-agent

－ U-agent

－ M-agent

－ I-agent

Figure 1 shows the architecture of the proposed

system in two browser tabs T1 and T2. Whenever a

new tab is opened, a fresh pair of level 1 agents (U-

agent and T-agent) are created to observe the activities

in that tab to discover a malicious action. When the tab

is closed, they are disposed.

Figure 1. Architecture of multi agent system

The level one agents are managed by level two agent

(M-agent). The interface between the user and the

system is provided by level three agent (I-agent). The

agents are arranged in a hierarchical fashion so that

they are able to communicate and cooperate properly.

They are having a set of characteristics, such as

parallelism, autonomy, reactivity, adaptivity etc. which

allow them to cover several needs for dynamic

environments. Multi-agent systems are incorporated in

this system to bring modularity and parallelism where

all the computing tasks are delegated to the agents.

There is an agent platform which integrates a set of

agents with specific functionalities. As the distributed

multi-agent platform is designed by means of modeling

the functionalities of the agents, all communications

take place via the agents and thus the system control is

reduced. The communication among agents in the

platform uses FIPA ACL [32].

3.1 T-agent

T-agent or Tabnab agent is a level 1 agent

responsible for handling incoming requests from

browsers for webpages. T-agents in each tab perform

its delegated task in two phases, Feature Extraction and

Feature Comparison to detect tabnabbing in a webpage.

Figure 2 depicts the functionality of T-agent.

Figure 2. Functionality of T-agent

When a webpage is loaded, T-agent extracts its five

tuple information which is recorded for the next phase.

The procedure is continued every 60seconds and these

features are matched with the recorded values to obtain

a resemblance score for each pair of elements. A web

page is considered as similar to the recorded one, if

resemblance score is higher than a threshold t. The

details are discussed in the next two subsections.

Feature extraction. Feature extraction is a quantitative

way of capturing a set of features that describe various

aspects of a page. These features cover text, image,

URL, title and favicon of the current page. During the

first pass, T-agent stores these values for later use.

SAX parser [33] is used for text extraction as it is an

effective mechanism to parse the webpage. SAX is an

event based parser, which support more simple forms

of interaction with the data and handles larger

documents. SAX processing does not load any XML

documents into memory. Therefore it is lightweight

and fast.

Concerning image extraction, the approach extracts

the source address of the image src attribute which can

be obtained from the SAX parser output, the area

occupied by the image in pixel and its position in

webpage, and RGB color histograms. Feature

extraction process is explained formally in Algorithm 1.

756 Journal of Internet Technology Volume 19 (2018) No.3

Algorithm 1: extract Features

Input: Webage w

Output: Extracted features of w

1. Open the webpage w

2. Parse count=0

3. U <-webpage URL

4. T <-Parse w using SAX

5. H <-hyperlinks Filter(T)

6. Ti <-getTitle(T)

7. extract Favicon(w)

8. extract Images(w)

9. Parsecount++

Feature comparison. Feature comparison is performed

by comparing matching elements separately. The

syntactic similarity of two text documents d1 and d2

are calculated to get a resemblance score Rt, which is a

number between 0 and 1. The resemblance of the

corresponding documents can be computed in time

linear in the size of the sketches [34]. In this method,

each document is viewed as a sequence of words, and

start by lexically analyzing it into a canonical sequence

of tokens. A set of subsequences of tokens s (d, n) are

associated with every document d. A contiguous

subsequence contained in d is called a shingle. For a

given shingle size, the resemblance Rt of two

documents d1 and d2 is defined as:

 1 2

1 2

1 2

() ()
(,) .

() ()

s d s d
Rt d d

s d s d

∪

=

∩

 (1)

Then, compare all image elements to obtain a

resemblance score Ri. Comparison of each image is

performed as follows:

- Comparisons of source address of the image src

attribute.

 The resemblance between the two src attributes are

computed using the Levenshtein distance.

- Comparison of RGB color histogram

 The resemblance between the two matrices

representing the color histograms H and H1 using 1-

norm distance as

 1

1
1 (,).L H H− (2)

- Comparison of pixel positions occupied by the

image.

 The resemblance between the two positions in a

webpage is computed as

 1 (/).
d

d M− (3)

 where d is the Euclidean distance between the two

points and Md is the maximum Euclidean distance

between two points.

- Comparison of the area occupied by the image in

pixel.

 The similarity between the two images’ areas A

andA1 are calculated as:

1

1

| |

(,)

A A

Max A A

⎡ ⎤−
⎢ ⎥
⎣ ⎦

 (4)

Using these four scores, a single resemblance score

Ri ∈ [0, 1] is derived. The webpage addresses are

monitored and recorded at regular intervals to obtain a

resemblance score Ru. Favicons are compared by

source to get a resemblance score Rf. These are

indicated using boolean values 0 and 1, where 0 means

no resemblance and 1 means perfect match. Title of the

webpage is matched with the old one to find a

resemblance score Rti. Finally, the overall resemblance

of the two pages are calculated using the above

mentioned 5-tuple as

 R=Rt+Ri+Ru+Rf+Rti. (5)

The resemblance score is greater than a threshold t,

for similar pages. If there is a radical change, the user

is informed about the presence of an attack by

displaying an alert message. A desirable value of

threshold t is to be chosen to identify the existence of

an attack. A higher threshold is preferable in this case

as tabnabbing may change the aforementioned

parameters to launch an attack. Pseudocode for feature

comparison is given in Algorithm 2. T-agent computes

the overall resemblance score after getting the value of

Ru from U-agent. The hyperlinks in the webpage are

extracted and effectively examined to verify if they are

mischievous.

Algorithm 2: compare Features

Input: Webage w

Output: Resemblance score

1. Add new Ticker Behaviour to T-agent for every 60

 seconds

2. extract Features(w)

3. if (Parsecount>1) then

4. Rt <-compare Text()

5. Ri <-compare Images()//from stored directory

6. Rf <-compare Favicon()

7. Ru <-compare URL()

8. Rti <-compare Title()

9. R Rt Ri Rf Ru Rti= + + + +

10. returen R

11. else

12. returen false

13. end if

3.2 U-agent

U-agents(URL check agent) are in action if the URL

of the webpage is changed after a tab switch event or

inert tab. The approach maintains a URL blacklist

which holds URLs that refer to sites that are considered

malicious. The U-agent queries the URL blacklist to

determine whether the currently visited URL is on this

list. If the URL is included in the black list, the user is

Intelligent Agents in Securing Internet 757

advised accordingly. For the blacklist to work properly,

it should ideally contain every phishing website, which

is impossible. As a result, it can lead to a number of

false positives. So, the webpage addresses that are not

blocked by the blacklist are given a structural analysis

in which 25 salient features are selected from the

doubtful URL and a total score is calculated.

Occurrence of each feature in URL will add one to the

total score of the URL check. If the score is above a

certain threshold, the page is marked as phishing. The

default threshold is three detections. Algorithm 3

shows the various steps in evaluating the URL of a

webpage. The result of URL check is forwarded to T-

agent for further steps. If the result of URL check is

less than 3, the referred URL is reliable and returns the

value 0 to T-agent otherwise return 1 to convey that the

URL is not reliable.

Algorithm 3: behaviour of URL

Input: Webage w, Blacklist BL

Output: URL Check result 0: Legitimate

 1: Phishing

1. if URL is changed then

2. if changed URL in BL then

3. returen 1

4. else

5. extract URL features(U)

6. URL Check ()

7. if URL Check score>=3 then

8. returen 1

9. else

10. return 0

11. end if

12. end if

13. else

14. return 0

15. end if

URL features. Phishing URLs can be of various types.

The obfuscating URL patterns include digits in the

URL, long URLs, many dots in the URL, etc. The

proposed method has used 25 features selected by

observing the heuristics in the structure of phishing

URLs and also by referring literatures [16, 35]. As

shown in Table 1, there are 5 lexical features, 10 token

based features and 10 target based features.

Table 1. Feature types and its count

Feature Type Count

Lexical 5

Token based 10

Target based 10

(1) Lexical Features: The lexical(textual) features

help us to identify that malicious URLs tend to “look

different” from legal URLs. The approach has chosen 5

lexical features by noticing the composition of

phishing URLs in phishtank.com. The lexical features

include digit in host, length of hostname, number of

suspicious characters ‘@’, number of dots in path and

length of URL.

(2) Token Based Features: The malicious URLs

may contain some eye catching keywords or tokens to

attract end users (eg. signin, confirm, login etc). The

selected 10 keywords includes login, signin, confirm,

verify, secure, banking, web, dispatch, pay and http.

(3) Target Name Features: From phishtank data

archive, an analysis was done for different monthly

stats archive and collected top10 brands used by

fraudsters during the period June to December 2015.

The most popular target was paypal. There were 4103

valid phishes against this site. The other targets include

Apple, AOL, facebook, eBay, Google, Yahoo, Itau,

WalMart and Bradesco.

4 Implementation

The implementation of the proposed method uses

JADE software framework [36] in java platform. In

order to perform the experiments, we used Core i3

@2.20 GHz processor, 4GB of RAM memory, JDK

1.8 and JADE 4.2.0 in Windows 7 platform. In our

method, we have used a layered architecture and have

three main software layers. The lowest layer or reactive

layer is the j2se/j2ee runtime environment; on a local

computing machine. The middle layer is the JADE

platform, which comprises a number of containers for

providing services for multi-agent operations. The

uppermost layer is the application layer where the

agents communicate and co-ordinate with each other to

perform their delegated tasks. Google chrome was

selected as the browser as it is vulnerable to modern

type of attacks. The method currently has a simple user

interface, displaying an alert message to the user if a

webpage is deemed as phishing.

4.1 Experimental Evaluation

We conducted two experiments to assess the

performance of our agent based method. In the first

experiment, we examined the effectiveness of our

multi agent architecture for detecting tabnabbing. The

second set of experiments are conducted to analyse the

performance of the approach in identifying URL

obfuscations and suspicious links in a webpage. Finally,

we evaluated the overall effectiveness of our method

by comparing with existing techniques.

Experiment 1-Detection of tabnabbing attack. In

this experiment, we evaluated how much effective our

agent based method was in detecting tabnabbing. The

data set consists of a set of common webpages with

login forms such as banking sites, web mail clients,

credit cards, social networking sites etc. as tabnabbing

targets webpages which can provide confidential

758 Journal of Internet Technology Volume 19 (2018) No.3

information of users. The approach used 1000 unique

webpages with login forms from different sources for

attack recognition as shown in Table 2. To make a list

of blacklisted URLs, a collection of real phishing sites

from phishtank are taken.

Table 2. Sources of dataset

Sources No. Of webpages Percentage

Alexa 270 27%

Banks 530 53%

DMOZ 200 20%

Tabnabbing attack is simulated in these webpages

by running a script. The simulation of attack used eight

tabnabbing pages from different categories like social

networking, email, banking and money transaction

sites with the appearance similar to the real ones

(facebook, twitter, eBay, gmail, hotmail, paypal,

citibank and bradesco). Tabnabbing attack is simulated

in these webpages by running a script. For the

simulation, start the agent platform and load the

webpages in the dataset in different tabs of the browser.

Run the script for the currently focused window and

perform a tab switch to some other window. When the

user returns to that inactive tab after 60 seconds, the

webpage has changed to a tabnabbing page (already

created). A time interval of 60 seconds is set with an

assumption that a phisher may take at most 60 seconds,

to reload the inactive page with a new look.

During this time, the relevant features from the

webpages opened in various tabs are captured and

recorded (feature extraction phase). The feature

extractions conducted further in every 60 seconds use

this recorded value for comparison phase. The output

of feature comparison is a resemblance score of the

original webpage with its currently opened version. In

the case of text, images and title, percentage of

similarity is considered. The similarity in webpage

address and favicon are indicated using boolean values.

The resemblance score of webpages in the dataset are

calculated for the eight tabnabbing pages. This process

is continued with all the webpages in the dataset.

In order to separate legitimate and phishing pages,

we partitioned the resemblance score set according to a

threshold value t. In this framework, the value of t is

set to 4 to get an accurate result. If resemblance score

is greater than 4, the webpage is considered as genuine,

otherwise as phishing and an alert message is displayed.

Figure 3 shows the snapshot of a webpage opened in

one of the browser tabs and the webpage changed its

layout to gmail login page. The alert generated by the

agent based mechanism is shown in Figure 4.

Figure 3. View of a webpage before tab switch

Figure 4. Impersonated webpage and the alert

generated by the framework

The effectiveness of the method is assessed using

the following parameters.

True positive (TP) – Legitimate websites detected as

legitimate.

True negative (TN) – Phishing websites detected as

phishing sites.

False positive (FP) – Legitimate websites detected

as phishing sites.

False negative (FN) – Phishing websites detected as

legitimate ones

False Positive Rate (FPR) and False Negative Rate

(FNR) for various values of the threshold t are

computed which is shown in Figure 5. They are

calculated using the formulas given below:

 .
()

FP
FPR

FP TN
=

+

 (6)

 .
()

FN
FNR

FN TN
=

+

 (7)

Intelligent Agents in Securing Internet 759

Figure 5. False positive rate and false negative rate in

various thresholds

It is noteworthy that there exists a particular

threshold value for which the framework exhibits

perfect behavior. Since the performance of the system

is primarily determined by the choice of t, an effort is

done to find the best t by varying it from 0 to 5 and

found that the method performs best when t=4.

In addition, we have evaluated accuracy, precision,

recall and F1(harmonic mean of precision and

sensitivity) to measure the performance of the

proposed method. Table 3 summarizes the evaluation

results using the following measurements in various

thresholds.

Table 3. Evaluation results

Threshold Accuracy Precision Recall F1 measure

0 90 98.7 91.1 94.7

0.5 90 98.8 91.0 94.7

1 90 98.9 90.9 94.7

1.5 91 99.6 91.3 95.2

2 92.8 99.6 93.0 96.2

2.5 93.5 99.6 93.7 96.5

3 95 99.6 95.1 97.3

3.5 96.8 99.8 96.8 98.3

4 97.3 99.9 97.2 98.5

4.5 96 99.8 95.9 97.8

5 96 99.7 96.1 97.8

()

.
TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (8)

 .

TP
Precision

TP FP
=

+

 (9)

 .

TP
Recall

TP FP
=

+

 (10)

2

.
2

TP
F1

TP FP FN
=

+ +

 (11)

Figure 6 shows the percentage of false detections

from various tabnabbing pages. From our analysis, it

has been noted that impersonated versions of email

services (hotmail and gmail) hasn’t contributed to false

detections. The percentage of false detections was

mainly from fake versions of banking sites (bradesco

and citibank).This shows that our method could detect

all the cases of tabnabbing launched using email

services.

Figure 6. False detections from tabnabbing pages

Experiment 2-Evaluation of page URL. In this

experiment, we evaluate the robustness of our agent

based method against URL obfuscations and malicious

links. The experiment is conducted in 500 legitimate

pages and 400 phishing pages. The legitimate pages are

some common webpages and phishing sites are taken

from PhishTank [37]. PhishTank is the largest

repository for data and information about phishing

scams on the Internet. After submitting to PhishTank, a

potential phishing URL is verified by a number of

registered users to confirm it as phishing. A program in

java is written to determine the legitimacy of the URL.

Table 4 shows the percentage of existence of each

feature in legitimate and phishing URLs.

Table 4. Percentage of occurrence of each feature in

legitimate and phishing URLs.

Features
Legitimate

URLs(%)

Phish

URLs(%)

Lexical 0.3% 38.3%

Token based 1.60% 58%

Target based 0.80% 33.20%

Figure 7 shows the average miss rate with respect to

the number of legitimate and phishing pages. The

results show that the percentage of miss rate is

reasonably low. It has been seen that the suitable

selection of phishing features from malicious URLs

have significant impact on the method’s performance.

The URL detection method has succeeded in

appropriate detection of features from phishing and

legitimate sites and thus contributed to lower miss rate.

760 Journal of Internet Technology Volume 19 (2018) No.3

Figure 7. Average miss rate with respect to the number

of webpages

4.2 Agent Performance

In this section, we evaluate the performance of

individual agents and the multi agent system in

detecting phishing attacks.

Performance evaluation of individual agents. In the

proposed method, multiple agents are designed to

operate in a complex environment to detect

sophisticated phishing attacks. Moreover, the agents

are equipped with computational behavior to perform

tasks. Here, T-agent and U-agent are purely

computational. There are four agents in action while a

browser tab is open. Figure 8 shows graph with the

number of agents active plotted with the number of

opened browser tabs.

Figure 8. Number of agents vs Number of tabs

The complexity of each agent in performing a task is

computed by measuring the number of methods

implemented within the agent and the sum of

cyclomatic complexities of these methods. A higher

value indicates a complex agent. This is calculated as

follows:

 Task Complexity,
.

0

()
n

i

i

TC C

=

=∑ (12)

where, n is the number of methods implemented

within the task; Ci is the ith method complexity. The

complexity for one module is Log n, thus the overall

complexity for one task is n* Log n. The complexity

level of each agent is shown in Figure 9.

Figure 9. Task complexity of agents

The computation complexity involved in performing

a task can be effectively reduced by using the

following optimizations. The prime idea to improve

performance is to execute the expensive comparison

operations towards the end. In this method, more

computational complexity is involved in image

comparison. While evaluating the resemblance score of

favicon and URL, if there is a mismatch with the stored

value, we can skip text and image comparison as the

overall resemblance score does not reach the threshold

value t. This can result in reduced complexity and

computation cost.

The agent technology described here shows

promising results in building cost-effective, distributed

systems that are powerful and flexible. The multiple

agents in this system communicate and coordinate in a

peer to peer fashion. They do need to send and receive

messages using agent communication protocol. The

agents communicate via asynchronous message

passing and they use FIPA Agent Communication

Language [32] in JADE platform.

FIPA guarantees the interoperability between agents

by coordinating different aspects of systems such as

agent communication, agent management, and agent

message transportation.

The architecture of the proposed MAS is

hierarchical and distributed, which significantly

reduces communication cost and increases efficiency.

The number of messages used for inter agent

communication increases linearly with the number of

agents but the number of messages sent between agents

are minimized to reduce the communication overhead.

Frequent communications are between level 1agents.

We are planning to improve and fine-tune our current

model to address the problem of communication delay

between agents in the next step.

Performance evaluation of MAS. To evaluate the

performance of our system in parallel attack

recognition, we opened multiple tabs in parallel and

ran the attack in each window. It has been noted that

the method was able to detect attacks while running 10

browser tabs in parallel with good response time (in

milliseconds). There is a slight decrease in efficiency

beyond that as it may cause delay in the system.

Intelligent Agents in Securing Internet 761

Figure 10 shows the efficiency of the system with

the number of browser tabs. Efficiency is expressed in

percentage and is calculated by dividing the number of

tabs in which attack detected by the total no of tabs

opened.

Figure 10. Efficiency of the method in parallel attack

recognition

4.3 Comparative Analysis

In this section, a performance comparison of the

proposed method against existing methods is plotted.

The first comparison is done with two existing anti-

tabnabbing methods to prove the efficiency of our

approach in detecting tabnabbing. The metric used is

accuracy (of attack recognition). Figure 11 shows the

comparison analysis of the proposed and existing anti-

tabnabbing methods TabShots [27] claim an accuracy

of 78% and TabsGuard [28] offers an accuracy of

96.5%. A quick glance at the results show that the

proposed anti-phishing solution is able to detect

phishing with an accuracy of 97.3% and outperforms

the existing methods with less false positives and false

negatives. The second comparison is done to show the

overall efficiency of our method in attack detection.

Figure 12 shows the comparison analysis of the

proposed method and five existing antiphishing

methods GoldPhish [22], Whitelist based method [15],

Figure 11. Comparative Analysis with Anti-

Tabnabbing methods

Figure 12. Comparative Analysis with Anti-phishing

methods

CANTINA [21], Anomaly based method [16] and

SpoofGuard [3] in terms of precision. From the results

it has been found that the proposed agent based method

performs well, and achieved good results, than the

other existing approaches.

5 Discussion

Eventhough agents are used in a variety of platforms,

ours is the first attempt to utilize them in antiphishing

process. By considering agent as a service [29], a lot of

human effort in phishing monitoring and detection can

be saved. The system consists of agents that

cooperatively self-organize [30] to monitor and track

fraudulent websites. The approach uses textual features

of a webpage to recognize a phishing attack and is able

to capture visually similar or dissimilar phishing

targets as it is considering the resemblance score of the

webpage features for classifying the current page as

fake or authentic.

In contrast to existing schemes [3, 17, 21-22] our

scheme is designed to neutralize three different types

of phishing attacks. Remarkably, our method has the

virtue that the adversary has very little possibility to

evade detection, in comparison to other anti-

tabnabbing schemes [25-28]. In the framework, there is

less chance of false positives as we consider

resemblance score as the basis for site’s legitimacy.

False negatives occur when a phisher tries to launch

tabnabbing with a look-a-like webpage with very few

changes in page layout. This could be alleviated by

fine-tuning the threshold value. In this framework, user

security was given utmost importance as attacks

exploiting human vulnerabilities have been on the rise

and online security has become that much important

[38].

This method has tried to do something different

where it alerts the user about the attack and give

explicit warning messages about the symptoms of

attack which are simple to understand. The proposed

framework is a simple and effective method which

concentrates on data security and accuracy of attack

762 Journal of Internet Technology Volume 19 (2018) No.3

recognition.

6 Conclusion

This paper presents the design and evaluation of an

agent based antiphishing method. The approach is

aimed to detect newer types of phishing scams leading

to identity theft and financial losses. This distributed

agent based framework can monitor and detect

phishing sites which masquerade as benevolent ones

simultaneously in many tabs. In practice, this approach

performs very well in perceiving tabnabbing, phishing

URLs and malicious links in webpages. In future, the

proposed method can be refined to work suitable for

evading other phishing attacks and is thus robust over

time.

References

[1] T. N. Jagatic, N. A. Johnson, M. Jakobsson, F. Menczer,

Social Phishing, Communications of the ACM, Vol. 50, No.

10, pp. 94-100, October, 2007.

[2] J. Mogul, DEC, H. Frystyk, T. Bermers-Lee, Hypertext

Transfer Protocol-HTTP/1.1, RFC 2068, January, 1997.

[3] N. Chou, R. Ledesma, Y. Teraguchi, J. C. Mitchell, Client-

side Defense against Web-based Identity Theft, 11th Annual

Network and Distributed System Security Symposium

(NDSS’04), San Diego, California, 2004, pp. 1-16.

[4] C. Hadnagy, P. Wilson, Social Engineering: The Art of

Human Hacking, John Wiley & Sons, 2010.

[5] M. Johns, Session Hijacking Attacks, in: H. C. A. van Tilborg,

S. Jajodia (Eds.), Encyclopedia of Cryptography and Security,

Springer, pp. 1189-1190, 2011.

[6] J. Mitchell, Browser Security Model, CS155, Spring, 2010.

[7] The Web Application Security Consortium, Cross-site

Scripting (XSS), http://projects.webappsec.org/w/page/13246

920/Cross%20Site%20Scripting29.

[8] M. A Ambusaidi, Z. Tan, X. He, P. Nanda, L. F. Lu, A.

Jamdagni, Intrusion Detection Method based on Nonlinear

Correlation Measure, International Journal of Internet

Protocol Technology, Vol 8, No. 2-3, pp. 77-86, December,

2014.

[9] Z.-G. Chen, H.-S. Kang, S.-R. Kim, Design of a New

Efficient Hybrid System for Intrusion Detection Based on

HSM Fuzzy Decision Tree, Journal of Internet Technology,

Vol 16, No. 5, pp. 885-891, September, 2015.

[10] Z. Baig, K. Salah, Distributed Hierarchical Pattern-Matching

for Network Intrusion Detection, Journal of Internet

Technology, Vol. 17, No. 2, pp. 167-178, March, 2016.

[11] A. Raskin, Tabnabbing: A New Type of Phishing Attack,

http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/.

[12] M. Cova, C. Kruegel, G. Vigna, Detection and Analysis of

Drive-by-download Attacks and Malicious JavaScript Code,

Proceedings of the 19th International Conference on World

Wide Web, Raleigh, North Carolina, 2010, pp. 281-290.

[13] Tutorialspoint, HTML Meta Tags, http://www.tutorialspoint.

com/html/html_meta_tags.htm.

[14] P. Prakash, M. Kumar, R. R. Kompella, M. Gupta, PhishNet:

Predictive Blacklisting to Detect Phishing Attacks,

Proceedings of the 29th Conference on Information

Communications, INFOCOM’10, San Diego, CA, 2010, pp.

1-5.

[15] A. Belabed, E. Aïmeur, A. Chikh, A Personalized Whitelist

Approach for Phishing Webpage Detection, Proceedings of

the 2012 Seventh International Conference on Availability,

Reliability and Security, ARES '12, Prague, Czech Republic,

2012, pp. 249-254.

[16] Y. Pan, X. Ding, Anomaly based Web Phishing Page

Detection, 22nd Annual Computer Security Applications

Conference (ACSAC’06), Miami Beach, FL, 2006, pp. 381-

392.

[17] A. Martin, N. B. Anutthamaa, M. Sathyavathy, M. M. S.

Francois, P. Venkatesan, A Framework for Predicting

Phishing Websites Using Neural Networks, International

Journal of Computer Science Issues, Vol. 8, No. 2, pp. 330-

336, March, 2011.

[18] M. Tsukada, T. Washio, H. Motoda, Automatic Web-Page

Classification by Using Machine Learning Methods,

Proceedings of First Asia-Pacific Conference on Web

Intelligence: Research and Development, Maebashi, Japan,

2011, pp. 303-313.

[19] Y. Zhang, M. Zhao, Y. Wu, The Automatic Classification of

Web Pages based on Neural Networks, Proceedings of 8th

International Conference on Neural Information Processing,

Shanghai, China, 2001, pp. 570-575.

[20] J. Chen, C. Guo, Online Detection and Prevention of Phishing

Attacks, Proceedings of First IEEE International Conference

on communications and Networking, Beijing, China, 2006, pp.

1-7.

[21] Y. Zhang, J. I. Hong, and L. F. Cranor, CANTINA: A

Content-based Approach to Detecting Phishing Web Sites,

Proceedings of the 16th International Conference on World

Wide Web (WWW’07), Banff, Alberta, Canada, 2007, pp.

639-648.

[22] M. Dunlop, S. Groat, D. Shelly, GoldPhish: Using Images for

Content-Based Phishing Analysis, Fifth International

Conference on Internet Monitoring and Protection, Barcelona,

Spain, 2010, pp. 123-128.

[23] InformAction, NoScript - JavaScript/Java/Flash Blocker for

a Safer Firefox Experience, http://noscript.net/.

[24] J. Barnabe, A. Horvath, YesScript, Firefox Add-ons,

https://addons.mozilla.org/enUS/firefox/addon/4922.

[25] S. A. Unlu, K. Bicakci, NoTabNab: Protection Against The

“Tabnabbing Attack”, eCrime Researchers Summit, Dallas,

TX, 2010, pp. 1-5.

[26] R. K. Suri, D. S. Tomar, D. R. Sahu, An Approach to

Perceive Tabnabbing Attack, International Journal of

Scientific and Technology Research, Vol. 1, No. 6, pp. 90-94,

July, 2012.

[27] P. De Ryck, N. Nikiforakis, L. Desmet, W. Joosen, TabShots:

Client-Side Detection of Tabnabbing Attacks, Proceedings of

the 8th ACM SIGSAC Symposium on Information, Computer

Intelligent Agents in Securing Internet 763

and Communications Security, Hangzhou, China, 2013, pp.

447-456.

[28] H. F. Hashemi, M. Zulkernine, K. Weldemariam, TabsGuard:

A Hybrid Approach to Detect and Prevent Tabnabbing

Attacks, 9th International Conference on Risks and Security

of Internet and Systems (CRiSIS 2014), Trento, Italy, 2014,

pp. 196-212.

[29] J. M. Bradshaw, Software Agents, MIT Press, 2002.

[30] K. P. Sycara, Multiagent Systems, AI Magazine, Vol. 19, No.

2, pp. 79-92, June, 1998.

[31] A. S. Rao, M. P. Georgeff, BDI Agents: From Theory to

Practice, Proceedings of the First International Conference

on Multiagent Systems, ICMAS-95, San Francisco, CA, 1995,

pp. 312-319.

[32] F. Bellifemine, A. Poggi, G. Rimassa, JADE– A FIPA-

compliant Agent Framework, Proceedings of the 4th

International Conference and Exhibition on the Practical

Applications of Intelligent Agents and Multi-Agents, London,

UK, 1999, pp. 97-108.

[33] J. Whitehead, SAX Parsing, https://classes.soe.ucsc.edu/

cmps183/Spring06/lectures/sax-parsing.pdf.

[34] A. Z. Broder, S. C. Glassman, M. S. Manasse, G. Zweig,

Syntactic Clustering of the Web, Computer Networks and

ISDN Systems, Vol. 29, No. 8-13, pp. 1157-1166, September,

1997.

[35] R. B. Basnet, A. H. Sung, Q. Liu, Learning To Detect

Phishing Urls, International Journal of Research in

Engineering and Technology, Vol. 3, No. 6, pp. 11-24, June,

2014.

[36] Jade, Java Agent DEvelopment Framework, http://jade.tilab.

com/index.html.

[37] PhishTank, Out of the Net, into the Tank, http://www.

phishtank.com/.

[38] M.-S. Kim, J.-K. Lee, J. H. Park, J.-H. Kang, Security

Challenges in Recent Internet Threats and Enhanced Security

Service Model for Future IT Environments, Journal of

Internet Technology, Vol. 17, No. 5, pp. 947-955, September,

2016.

Biographies

S. Sarika is a B-Tech. degree holder

in Information Technology, M.Tech.

in Computer Science and Engineering

and pursuing Ph.D in Computer

Science from Bharathiar

university.She is currently working as

Assistant Professor in Computer Science and

Engineering at Sree Narayana Gurukulam College of

Engineering, Kolenchery, Kerala, India. Her research

interest includes Internet security, Software agents and

Network security.

Paul Varghese is a B-Tech. degree

holder in Electrical Engineering,

M.Tech in Electronics Engineering

and Ph.D in Computer Science.

Currently he is working as Professor

in Information Technology at Cochin

University of Science and Technology, Thrikkakara,

Cochin, Kerala, India. His research interest includes

Fault Tolerent Computing and Data security.

764 Journal of Internet Technology Volume 19 (2018) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

