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Abstract 

The immense increase in data traffic has created 

several issues for the Internet community, including long 

delays and low throughput. Most Internet user activity 

occurs via web access, thus making it a major source of 

Internet traffic. Due to a lack of effective management 

schemes, Internet usage is inefficient. Advances in 

caching mechanisms have led to the introduction of web 

proxies that have improved real-time communication and 

cost savings. Although several traditional caching polices 

have been implemented to increase speed and simplicity, 

cache replacement accuracy remains a key limitation due 

to cache storage constraints. Our contribution concerns 

the algorithmic investigation of intelligent soft computing 

schemes to enhance a web proxy system to improve 

precision for reproducibility. This research also proposes 

a two-level caching scheme; the first level is least 

frequently used (LFU), and an extreme learning machine 

(ELM) is used for the second level. A traditional ELM 

for web caching is further optimized with object 

similarity factors. The proposed scheme is evaluated and 

compared to a traditional caching policy and its 

integration with intelligent caching using a well-known 

dataset from IRCache. The method is shown to achieve 

good performance in terms of high hit and byte hit rates. 

Keywords: Extreme learning machine, Least frequently 

used, Proxy, Replacement, Web caching 

1 Introduction 

Internet technology is now accessible around the 
world, leading to widespread Internet use and 
increased Internet traffic. According to a 2015 report 
by the International Telecommunication Union (ITU), 
the Internet community includes more than 3.2 billion 
people, and usage continues to increase [1]. This rapid 
increase has led to traffic of up to 72.5 exabytes per 
month [2], of which more than 98% is web-based 
Internet traffic [3]. The infrastructure of the Internet 
has not been able to keep pace with growth because of 
limited investment by Internet Service Providers (ISPs) 

[4-5].  
Consequently, many studies and applications have 

been developed to not only evaluate policy-based 
approaches of multi-tier ISPs but also efficiently use 
the existing Internet infrastructure, particularly from 
the user perspective, including factors such as the 
throughput and delay, which contribute to the quality 
of accessible web objects. Web proxies (web caching) 
have been developed to address this issue. The key 
concept that underlies proxy/caching is similar to that 
of traditional caching of the memory hierarchical 
structure of a CPU, including the CPU cache, RAM, 
and hard disk [6]. The inter-memory levels are 
positioned such that the time required to acquire data 
due to speed and distance is reduced. The efficacy of 
this structure can also be increased by accessible data 
repetition. This perspective is then applied to caching 
web objects to reduce the access time for long-distance 
Internet use, including bandwidth optimization with 
repetitive accessible patterns of Internet users.  

There are two types of proxies: forward and reverse 
[5]. The key difference between these proxies is based 
on their objectives and locations. A forward proxy is 
placed between the clients and the Internet (outbound) 
to reduce the delay in acquiring web objects that are far 
from the client location. The sub-sequence client, if 
present, can directly retrieve the objects from the proxy 
instead of re-traversing to the original source of the 
web objects. In contrast, a reverse proxy is positioned 
in front of the server farms that are used for balancing 
heavy loads from large accesses, including 
computational tasks to reproduce a particular web 
object within the proxy, and directly forwards the 
objects to the requester without the need for re-
computation at the server.  

Web caching has been applied by numerous 
organizations and providers; however, there are several 
trade-offs such as the need for additional hardware and 
software for cache management and extra computational 
processes. In addition, caching can only be applied to 
static data access. Due to these constraints, particularly 
caching storage, web caching further requires a smart 
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caching replacement policy [7] to achieve higher 
utilization of bandwidth as well as short delays. For 
example, a superior replacement algorithm should 
select non-repetitive objects from the cache to 
minimize space (caching storage). 

Generally, a traditional web caching replacement 
policy (TCRP) simply applies a single (or a few) 
factor(s), such as timing, ordering, frequency, or size, 
to determine the object replacement. The key 
advantage of a TCRP is its speed due to its low 
complexity, which makes TCRPs suitable for real-time 
or online communication [8]. The trade-off, however, 
of a TCRP is the replacement precision, which will 
probably lead to the un-optimized use of caching 
storage and thus high cost and larger budgets. 

Soft computing has recently been proposed to 
resolve the problem of uncertainty and a non-linear 
solver. Soft computing is used in science and 
engineering problems [9], such as clustering and 
classification, and particularly in the areas of 
recognition and prediction, including web caching 
replacements [10]. Several classes of soft computing, 
such as Neural Networks (NNs), Fuzzy Logic (FL), 
Support Vector Machines (SVMs), and Evolutionary 
Computation (EC), can be applied to a particular 
problem based on the characteristics of the soft 
computing; their key advantages are their high 
precision with comparable computational complexity 
trade-offs with heuristic approaches.  

Consequently, in addition to providing a detailed 
discussion of how to apply other applications of soft 
computing to web caching algorithms for 
reproducibility, this research proposes a combination 
of the two approaches (i.e., high speed and high 
precision) in the form of a two-level web caching 
scheme. To achieve the high-speed retrieval of web 
objects for clients, a TCRP is selected for the first 
(small) level of caching storage.  

To achieve higher precision with a timing trade-off, 
soft computing approaches are then applied as the 
second level for (larger) caching storage. The TCRP is 
investigated to select the best algorithm, although it is 
not limited to this algorithm; we then select an extreme 
learning machine (ELM) from several traditional soft 
computing techniques for use as the second level 
replacement policy. An enhancement of the ELM with 
respect to similarity is also proposed; these methods 
are denoted Hybrid ELM-LFU (H-ELM-LFU).  

This article is organized as follows. Section 2 
provides a brief overview of web caching schemes and 
particularly traditional caching replacement and 
intelligent caching classification. Section 3 explains the 
techniques of the present work, including the use of 
intelligent caching and its integration. The concept of 
our proposed two-level caching scheme, including an 
ELM and its enhancement, is discussed in Section 4. 
The performance of our proposed scheme is compared 
with other state-of-the-art soft computing applications 

with traditional caching replacement policies in 
Section 5. Finally, Section 6 offers conclusions and 
possible future research. 

2 Overview of Web Caching Replacement 

Schemes 

This section provides a brief overview of web 
caching replacement schemes categorized into two 
classes: traditional caching replacement policies and 
intelligent caching schemes. However, the focus is on 
soft-computing-based schemes. 

2.1 Traditional Caching Replacement Policy 

(TCRP) 

Although several caching schemes have been 
proposed, e.g., Bélády, Most Recently Used, Random 
Replacement, Low Inter-reference Recency Set, and 
Adaptive Replacement Cache [11], the focus here is on 
well-known (primitive) caching techniques applied to 
the context of web caching, including First In First Out 
(FIFO), Least Recently Used (LRU), Least Frequently 
Used (LFU), and Greedy Dual Size (GDS). Note that 
several of their derivatives, such as LRU-MIN and 
Hierarchical GD, are also available, which also results 
in greater computational work; however, again, each of 
these methods can be applied for the selection of the 
first-level cache for our proposed hybrid model. 

These schemes have been adopted from traditional 
time scheduling, which is used in CPUs, the queuing 
problem, and particularly in high-speed queuing 
applications [6]. These schemes apply simple statistical 
analyses, and their key advantage is their simplicity 
(i.e., low computational complexity) such as from 
considering only a single (or only a few) factor(s)/ 
parameter(s). 

FIFO can be considered a pioneering scheduling or 
replacement scheme that is based on arrival time. In 
other words, the oldest web object (earliest timestamp) 
will be selected for replacement first, and this process 
is iterative based on the time domain. 

LRU considers the time to access a particular web 
object in the final replacement decision instead of 
replacement ordering. This algorithm assumes that 
recent objects will be frequently used.  

LFU assumes that the greater the number of 
accessible objects, the higher the probability of being 
cached. LFU applies the accumulative frequency of 
web access to make the replacement decision; low-
frequency objects will be selected first for replacement.  

GDS can be considered a functional-based model 
that utilizes two factors: cost and size. The relationship 
between these two factors is given by the equation 
below, where H denotes the priority factor of 
replacement, c (cost) is a co-efficiency factor that 
ranges from 0 to 1 and s is the size of a particular web 
object (e.g., bytes), The lower the value of H, the 
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higher the probability of replacement. 

 
c

H
s

=  (1) 

2.2 Soft Computing for Web Caching 

Replacement  

As previously discussed, soft computing has 
recently been optimized to solve science and 
engineering problems [9] and is particularly suitable as 
a non-linear solver for uncertainty. There are several 
classes of soft computing (e.g., NN, FL, SVM, and EC 
[12-15]), each of which has several derivatives; for 
example, Genetic Algorithms (GAs), Differential 
Evolution (DE), and Ant Colony Optimization (ACO) 
are representatives of the EC class. Each solution is 
applicable to many problems.  

Note that the focus of this study is on the practical 
integration of soft computing with web cache 
replacement. Consequently, the discussion is based on 
a well-known approach (available) that uses a 
representation of each class: NN for Multilayer 
Perceptron (MLP) with Back Propagation (BPNN), FL, 
GA, and SVM. 
Neural network (NN) for web caching replacement. 

An NN is a mathematical model that is used to imitate 
the human brain in performing an intelligent task [12]; 
it integrates computational units (neurons) in multiple 
layers, where the layers are connected by adjustable 
weights. Traditionally, there are three layers: the input, 
hidden, and output layers. This research applied MLP 
with a BPNN (Figure 1). 
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Figure 1. A neural network for web caching 

An NN includes two phases: training and testing 
(this also applies to SVMs and our proposed ELMs, 
including their derivatives, as will be discussed below). 
The training phase is conducted to retrieve the weights 
of the input (w_in) and output (w_out) with the 
constraint of the least mean square error (LMSE) given 
as the objective function E(t), as stated in the following 
equation: 

 
( ) ( )

2 2

1 1 1 1

( ) ( ( ) ) ( ( ) ( ))
N L N LK K

i i i

k i k i

E t e k d k z k

= = = =

= = −∑∑ ∑∑  (2) 

 

where K denotes the number of epochs (rounds), N(L) 
is the number of hidden nodes in the Lth layer, di(k) 
denotes the target value (actual value) of node i, and z 
is an output value, such as y×w_out, in which y is a 
function of the input x, w_in, and bias. For the testing, 
given the stored weights from the training process, i.e., 
w_in and w_out, the cacheable probability of the cache 
being replaced (CA) is computed using the equation 
below, where the input X_test, i.e., the HTTP request 
method (R), UID (U), and size (S), are the testing input 
values. 

 

1
_ ( )

1 exp( ( _ _ ))

T
w out

X test w in
×

+ − ×

 (3) 

Algorithm 1 and Algorithm 2 show the web cache 
replacement scheme when the NN is applied in both 
the training and testing phases. For the training, w_in 
and w_out are first randomly generated (line 1) in the 
range of -1 to 1 and are then updated based on the 
LMSE. The inputs X(R, U, S) of the web object 
attributes are transformed to the values in the range of 
[-1, 1] for R (such that GET is 1 and the others are -1) 
and the range of [0, 1] for U and S divided by 10N 

where N is the number of digits. These forms are then 
computed based on an activation function (a sigmoid 
function is used here) to generate the output by 
multiplying by the input weight w_in (line 4). The 
cacheable probability (CA) will be estimated with the 
output weight w_out (line 5).  

 
 

Algorithm 1: NN in the Training Phase 

Input: ( , , ) , , ,
N N

X R U S Y K N  

Output: , ( ) ( ),
inN N L outN L

w w  

1.  Generate Random Weight ( , ( ) ( ), _
inN N L N L

w w out ) in  

     the range [-1, 1] 
2.  WHILE ( K epoches ) 

3.       WHILE (N records) 
4.       Calculate Output from Activation Function 

( ) 1, ( )[ ] { ( , , )[ ] _ }
N L N N N L

y j sigmoid X R U S j w in
+

→ ×  

5.       Calculate Cacheable Probability  

( ) ( )[ ] _
N L N L

CA y j w out= ×  

Calculate Cacheable Error 
[ ] [ ]error j CA Y j= −  

7.         Adjust Output Weight 

[ ] [ ]_ ( [ ] )T
N L N L

w out error j y− ×  

8.        Adjust Input Weight  
2

, ( ) ( )_ { [ ] _ } (1 ( [ ] ))

( , , ) }

T

N N L N L

T

N

w in error j w out y j

X R U S

− × × −

×

 

9.        ENDWHILE 
10. ENDWHILE 
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Algorithm 2: NN in the Testing Phase 

Input: 
, ( ) ( )( , , ) , ,

N N N L N L
test R U S in out

X w w  

Output: CA  

1.  Calculate Activation Function  

, ( )( ) ( , , )( )
N N N L

N L test R U S in
y sigmoid X w= ×  

2.  Calculate Estimated Cacheable Probability 

( ) ( )_ ( )T
N L N L

CA w out y= ×  

 
Next, the approximated error is computed from the 

CA and the actual target (Y) (line 6). The output weight 
will then be adjusted based on the error (line 7) as well 
as the input weight (line 8). These processes will 
iterate for K epochs, leading to the final appropriate 
weights.  

Several steps can be used to test the NN (with a fast 
testing process) based on the trained inputs (Algorithm 
1) as shown in Algorithm 2. First, the testing web 
object attributes are fed into the activation function and 
multiplied by the input weight w_in (lines 1-2), the 
approximation of the CA is derived from the output 
weight, and the result is derived from the activation 
function. The CA will be used again as a decision for 
caching; a value greater than 0.5 indicates caching and 
vice versa.  
Fuzzy logic system for web caching replacement. A 
Fuzzy Logic System (FLS) is used to manage 
reasoning in which there is an approximation that does 
not provide the exact solution. In general, the true 
value will be in the range from 0 to 1. The four main 
processes are described below. The example 
corresponds to the Mamdani fuzzy system due to its 
key advantage of simplicity as our selection criteria 
[16]. 

A fuzzifier is used to transform the input data 
mapping to the defined membership functions to 
determine the crossing points of each function such as 
Gaussian, trapezoidal, triangular, generalized bell, and 

sigmoid functions. 
A fuzzy rule is used to create the mapping between 

the input and output given its membership function. 
For example, for the triangular function and twelve 
pre-defined rules (Table 1), Figure 2 to Figure 5 show 
three inputs (Frequency - F, Time - T, and Size - S) and 
the input (weight) of fuzzy systems using the rule-
based approach shown in Table 1: very high (VHI), 
high (HIG), medium (MED), low (LOW), and very 
low (VLO) [17]. 

 
 
 
 
 
 
 

Table 1. Examples of fuzzy rules 

IF 

Frequency 

AND 

Time 

AND 

Size 

THEN 

Weight 

LOW VHI MED VHI 

LOW HIG HIG VHI 

MED VHI HIG VHI 

LOW VHI HIG VHI 

LOW HIG HIG HIG 

MED HIG LOW MED 

MED VHI MED HIG 

MED HIG HIG HIG 

HIG VLO HIG LOW 

HIG HIG HIG LOW 

LOW MED HIG HIG 

MED HIG MED MED 

0

0.5

1

0 13 25

LOW MEDIUM HIGH

 

Figure 2. A fuzzy membership function (Frequency) 

0

0.5

1

0 150 300

LOW MEDIUM HIGH

 

Figure 3. A fuzzy membership function (Time) 

0

0.5

1

0 0.55 1.1 1.65 2.2

VERYLOW LOW MEDIUM HIGH VERYHIGH

X 104

 

Figure 4. A fuzzy membership function (Size) 

0

0.5

1

0 0.33 0.66 1

LOW MEDIUM HIGH VERYHIGH

  

Figure 5. A triangular function (Weight) 
 

A fuzzy inference engine is used to derive the 
output (weight) given the inputs, such as the size, time, 
frequency and rule-based weight with aggregation 
methods such as intersection operations. The output 
(weight) here is the Replacement Probability (RP).  

A defuzzifier is used to compute the output based 
on the Center of Gravity (CoG) over the derived output 
weight (RP). This output (in the range between 0 and 1) 
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is then used as the CA because if the output is greater 
than 0.5 [17], the representation of the cache status is 
“cacheable”; otherwise, it is “uncacheable” or to be 
replaced. 

Algorithm 3 shows an example methodology for 
web caching using a fuzzy system. First, a set of 
interesting parameters are considered as a threshold; 
we consider the entire sets but only three inputs: size, 
time, and frequency. The membership function that 
corresponds to these inputs and the input weight (w_in) 
are then generated using the fuzzy rule (lines 1-3). The 
fuzzy inference engine is then applied with the 
aggregation method (line 4). Once the output is 
generated (RP), the CoG is computed, which results in 
the output (out) (line 5). Finally, this output is used to 
indicate the caching stage (CA) (line 6).  

 
 

Algorithm 3: Fuzzy Logic for Web Cache Replacement

Input: X(S, T, F) 

Output: CA  

1.  Generate Membership Function for the Inputs X(S,  

T, F) 

2.  Generate Membership Function for input weight  
w_in 

3.  Generate Fuzzy Rule (S, T, F, w_in) 

4.  Apply Fuzzy Inference Engine (FIE) with Aggregation
RP ←  FIE(S, T, F, w_in) 

5.  Calculate Output (out) from the CoG 
6.  Calculate CA based on out 

 
Genetic algorithms for web caching replacement. 
GAs are traditional ECs [18] and include three main 
steps as follows:  

Population selection is used to properly select the 
population members with a specific size as the parent 
of the current generation; here, the selection for 
replacement occurs from the top ten least accumulative 
frequencies (provided by the ranking algorithm).  

The genetic operator is then used to generate better 
children. There are two common operators. The first 
one is “crossover”, an operator that functions as the 
blender of two different genes with a common cut 
(cross) to create different genes. Here, the encoding is 
the representation of the URL (including the full path) 
with the cut on only the domain path (domain and 
domain suffix, including the subdomain if available), 
as shown in Figure 6.  

Parent

http://blog.eikeland.se/images/-openwrt-on-hama-mpr-a1-v2-2/201204160226342556.jpg
http://www.rentacomputer.com/blog/wp-content/uploads/2012/09/storage-servers.jpg

Child

http://blog.eikeland.se/blog/wp-content/uploads/2012/09/storage-servers.jpg

http://www.rentacomputer.com/images/-openwrt-on-hama-mpr-a1-v2-2/201204160226342556.jpg

�

�

 

Figure 6. Genetic crossover operator for web caching 

The second operator is “mutation”, which is used to 
randomly generate a new population. Here, our 

encoding is used to randomly replace the first tier 
domain with other domains, from .com to the top ten 
domains (gTLD), including .net, .org, .info, .biz,  
.us, .xyz, .mobi, .asia, and .club (see Figure 7) [19]. 

https://www.google.com/images/logos/google_logo_41.png

https://www.google.net/images/logos/google_logo_41.png

https://www.googleinfo/images/logos/google_logo_41.png

https://www.google.org/images/logos/google_logo_41.png.

https://www.google.biz/images/logos/google_logo_41.png

https://www.google.us/images/logos/google_logo_41.png

https://www.google.xyz/images/logos/google_logo_41.png

https://www.google.mobi/images/logos/google_logo_41.png

https://www.google.asia/images/logos/google_logo_41.png

https://www.google.club/images/logos/google_logo_41.png

Mutation

 

Figure 7. Genetic mutation operator for web caching 

Replacement is used to update the population - the 
children after the second stage replace those in the 
scaled population given the utility (i.e., lowest 
frequency).  

Algorithm 4 illustrates the methodology for web 
cache replacement using the GA with the output of the 
URL (to be replaced if it exists). First, the URL 
population is selected based on LFU (i.e., the top ten 
least access-providing ranking algorithms (lines 1). 
Next, the crossover operator is applied to create two 
possible children from the full URL with the concept 
of the only domain section (URLDomain) and its path 
(URLDomain_Path) (line 2). The mutation operator is 
subsequently applied by creating the URL with the first 
tier domain name from other names from the top ten 
gTLD (line 3). The generated URL is compared with 
the URL in the caching storage if it exists as the first 
candidate for replacement.  

 
 

Algorithm 4: Genetic Algorithm for Web Cache  
Replacement 

Input: 
s

URL  

Output: URL  

1. Initial Population (URL) with a specific threshold 
new population cache≤ Top 10 LFU (descending orders) 

2. Perform Crossover Operator 
URL[1] CROSS URL[2] = 

(URLDomain[1],URLDomain_Path[2]) and 

             (URLDomain[2],URLDomain_Path[1]) 

3.  Perform Mutation Operator based on x and y within 
Top 10 gTLD 
URLDomain[x],URLDomain_Path[x] →   

URLDomain[y],URLDomain_Path[x] 

 
Support vector machine for web caching replacement. 
An SVM is a supervised learning method that is used 
for classification. A set of training data will be mapped 
into two classes by an SVM, which makes it a non-
probabilistic binary linear classifier (-1 or +1) [20]. 
Here, each class represents the stage of caching: cache 
or not cache (to be replaced). An SVM is generally 
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modeled as a representation of points in space mapped 
to separate the category that has the highest margin. 

Figure 8 and Figure 9 show a representation of a 
linear classification given the transformation from an 
N-dimensional input vector X to feature vectors that 
provide the objective function D(X) using equation (4) 
below. 

(w.x) + b = +1

(w.x) + b = -1

(w.x) + b = 0  

Figure 8. SVM linear classification 
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Figure 9. SVM structure  
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Where the input X = {x1…xN} will be fed into the 
model (HTTP request method - R, UID - U, and size - 
S) with weights W = {w1…wm} such that N is the total 
number of input nodes, m is the number of kernel 
function nodes, and b denotes the bias. To derive the 
weight, Lagrange multipliers will be applied in terms 
of α (a scaling factor that is the gradient of the function 
for finding the largest or smallest value). Here, yi is the 
target value in the range of [-1, +1] (either hit or miss). 
g(x) denotes an SVM kernel function such as a linear 
function, polynomial function, radial basis function 
(RBF), or sigmoid function. 

Algorithm 5 shows the SVM (classification) in the 
training phase. Here, we apply R, U, and S as inputs 
into the kernel function (line 1), which is the RBF in 

this case. Here, gamma ( γ ) is 
2

1

2σ

 such that σ  is a 

free adjustable parameter; however, the implementation 
of the SVM (LIBSVM [21]) configures this number to 
1. The result is used to calculate the weight (w) and 
bias (b) in the form of Lagrange multipliers (line 2). 
Similar steps are applied for testing; however, only the 
test’s individual input (x) (here, we only feed one line 
as input) will be applied to the kernel function over the 

training sets (X). Equation (4) will subsequently be 
applied to compute the objective function (D) and to 
determine the CA; here, 1 represents cacheable or else 
(Algorithm 6). 

 
 

Algorithm 5: SVM (Classification) in the Training  
Phase 

Input: X(R, U, S)N, YN 

Output: ,
m

w b  

1.  Apply Kernel Function 
2( ) exp( || [ ] || ) | 1g X X X j j Nγ= − − ∈ �  

2.  Derive Weights (  and Bias (b) based on Lagrange  
     Multipliers 

 

Algorithm 6: SVM (Classification) in the Testing  
Phase  

Input: x(R, U, S), ,
m

w b  

Output: CA  

1. Apply Kernel Function 
2( ) exp( || [ ] || ) | 1g X X X j j Nγ= − − ∈ �  

2. Compute the objective function (D) from equation  
(4) 

3. Calculate CA based on the objective function (D) 

3 Literature Survey 

Several previous studies have described derivatives 
of traditional caching schemes, e.g., FIFO, LRU, LFU, 
and GDS [22], for online caching. However, these 
schemes have a key limitation in their replacement 
precision, especially given diverse web content 
(dynamic) [10-11]. To address this limitation, soft-
computing-based approaches, including web caching, 
have recently been used to heuristically seek the 
optimal solution with a timing trade-off.  

Previously, soft computing was used as a selection 
procedure for objects in memory. For example, Khalid 
et al. [12, 14] proposed a selection method called 
KORA (Khalid Shadow Replacement Algorithm), 
which was a pioneering technique in the integration of 
NNs for enhancing cache replacement schemes.  

Considering caching strategies, Cobb and ElAarag 
[23] improved KORA by introducing and enhancing 
Neural Network Proxy Cache Replacement (NNPCR) 
using a BPNN for web caching replacement based on a 
rating score of 0 to 1 using five main inputs: URL, 
frequency, size, timestamp, and number of requests. 
The results revealed a considerable improvement in 
performance compared to the traditional web caching 
policy.  

However, a key limitation of the BPNN is its 
computational complexity, which is generally not 
suitable for a real-time caching. In addition to an NN, 
Calzarossa and Valli [16] proposed FL as a 
replacement scheme. Four main parameters (i.e., size, 
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timestamp, accumulative frequency, and response time) 
are transformed into fuzzy rules, including low, 
medium, high, and very high. Their results indicated an 
improvement in caching replacement efficiency, 
particularly with small caching storage.  

Most of the techniques described above directly 
applied soft computing as the caching replacement 
policy; however, its key limitation is its high 
computation time, especially when properly used for 
on-line computation. Therefore, several recent 
proposals have described hybrid approaches that use 
both TCRP and soft computing [24].  

Another soft computing class, EC, has been 
evaluated as a cache replacement scheme. For example, 
Vakali et al. [18] proposed a web cache replacement 
policy that uses a GA to determine the density of web 
objects, including the retrieval rate (the product of 
latency and bandwidth), and then uses the density to 
construct the replacement rule. The results revealed a 
higher Hit Rate and Byte Hit Rate (HR and BHR) than 
other TCRP methods.  

Sulaiman et al. [25] applied Particle Swarm 
Optimization (PSO) instead of a GA. The computation 
of PSO was used to analyze the distribution of web 
objects before feeding it into LFU for final 
replacement. The precision and time complexities of 
this method were superior to those obtained using a 
BPNN. In addition, recently, Samuel et al. [26] 
improved a traditional Naïve Bayes (NB) technique 
with multiple nodes to construct the tree and reported 
superior performance with GDS hybridized with 
frequency; however, with large cache size, the 
precision tends to be reduced. 

Note that the hybrid models discussed above were 
integrated into a single storage, resulting in a key 
limitation on model interruption between TCRP and 
soft-computing-based approaches. Thus, there have 
also been some approaches addressing the concept of 
caching separation such as online and offline caches. 

Ahmed and Shamsuddin [27] investigated a 
combination of these two approaches, called a Neuro-
Fuzzy System (ANFIS), to predict whether a web 
object will be re-accessed within a given time period. 
In this approach, the caching schemes are either short 
term or long term (similar to online and offline caches). 
The first caching scheme applies LRU for fast retrieval, 
and the second scheme uses ANFIS. The four 
parameters, URL, time, frequency, and size, were also 
used as long-term cache parameters.  

Similar to Samuel et al. [26], however, Ali et al. [28] 
also proposed NB for classification using a Bayesian 
network to identify two classes: high probability to use 
or not use again. Again, two components, similar to the 
long-term and short-term caches that were proposed by 
the same group of authors [27], were designed and 
found to achieve better performance.  

Note that the same group of authors also considered 
an SVM instead of NB for classification [29]. However, 
here, GDSF was selected for the second component. 
The results showed an improvement in the efficacy of 
the replacement gain. To further reduce the 
computational time complexity, Sajeeva and Sebastian 
[30] applied the semi-intelligent concept of using 
Logistic Regression (LR) hybridized with LRU to 
improve the performance (computational time speed-
up) but with a precision trade-off. Note that the 
concepts of two-component caching were not 
discussed in detail, and the use of the selection criteria 
instead of other criteria was not justified.  

4 Two-Level Intelligent Web Caching 

Schemes 

Considering the key advantages of TCRP and soft 
computing (i.e., fast computation and high precision), 
our approach integrates both techniques into a hybrid 
model. TCRP is first used for online caching, and the 
accuracy is increased using soft computing. The 
selection of LFU was based on its superior 
performance in our evaluation, and ELM was used to 
represent the soft-computing schemes due to its 
advantage of providing computational complexity 
reductions with increased precision. In this section, we 
provide a detailed description of our proposed method, 
which is called Two-Level Intelligent Web Caching 
Schemes Using Hybrid ELM-LFU (H-ELM-LFU). 
Figure 10 presents a general schematic of our approach, 
which can be divided into first- and second-level 
caching schemes. 

4.1 First-Level Cache 

In this level, the key engine performs the 
replacement using the traditional web caching scheme 
(TCRP) for the purpose of (fast) online caching. Here, 
the LFU was selected based on its results compared to 
FIFO, LRU, and GDS; however, it is not limited to this 
method. There are three main components as follows: 
the TCRP cache engine, LFU cache replacement, and 
Tree Removal. 
TCRP cache engine. This component is the key 
function that responds to the user request. It has two 
main goals. First, if the web request exists in the first-
level cache database (TRCP caching storage), this 
module immediately responds with the web object 
(Cache Hit). In case there is no such object, this 
module continues to make a request for the object to 
the second-level cache management (i.e., ELM cache 
engine, discussed later) from the larger database. If 
found, the web object will be returned to the user; in 
addition, it will be stored/updated in the first-level 
cache (also defined as Cache Miss). 
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Figure 10. System overview of two-level intelligent web caching schemes 

Second, if there are no such web objects, then this 
module will make a request to the web server (Internet) 
for that particular web object. Once it is received, this 
module will forward it to the user and simultaneously 
replicate the web object to store in the first-level 
storage (if it is not full), also defined as Cache Miss. 
LFU cache replacement. This module will be 
activated only in the case of the cache being full 
(needed for replacement). This activation is used to 
identify the least frequently accessed web object in 
storage to be replaced with a new web object through 
the TCRP cache engine. Once replaced, a particular 
replacement web object will be forwarded to the 
second-level cache management, including the access 
pattern (hit/miss), which is the ELM cache replacement 
(discussed in detail in Section 4.2). 

Note that, again, the selection of LFU is used for a 
fast caching replacement and particularly for real-time 
communication because of its key advantage of low 
complexity, i.e., O(log(n)) [31]. In general, LFU 
assumes that, the higher the probability of accessible 
web objects, the higher the probability for the object 
being cached, thereby reducing the latency of 
subsequent requests.  

To confirm our selection criteria, we performed an 
intensive evaluation of well-known TCRPs, including 
FIFO, LRU, LFU, and GDS, and selected the best 
(LFU) for the web caching replacement in our first-
level cache. Figure 11 shows the replacement 
performance of different algorithms using the BO2 
web dataset from IRCache [32] over 15 days from the 
fourth quarter of 2015. We measured the HR and BHR 
under different cache sizes (8 MB to 1024 MB). The 
results clearly indicate the outstanding LFU 
performance of greater than 16% and of nearly 50% for 
the HR and BHR, respectively. 
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Figure 11. Web caching performance using the BO2 
dataset 

Tree removal. The purpose of the TCRP tree removal 
is similar to that of cache replacement; however, this 
module facilitates LFU replacement, particularly for a 
related web object. According to previous research on 
hierarchical tree structures, each website generally 
consists of various web objects (e.g., HTML, PHP, 
style sheets, images, audio, and video), all of which 
will be stored in the cache to provide fast accessibility. 
Thus, a traditional caching scheme will select the 
replacement policy if and only if there is a target 
replacement; therefore, other related objects are likely 
still in storage and not used. 

Although the objects will ultimately be chosen for 
replacement based on the frequency criteria, it may 
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take a longer period of time, and other, more 
significant objects will likely be replaced instead. 
Consequently, this study also proposes a specific rule 
to seek out related web objects. As shown in Figure 12, 
assume that the replaced web object www.kku.ac.th is 
considered to be the root (target replacement). Once it 
is replaced, other related objects, called leafs, will also 
be removed; in this case, these objects are all the 
objects sub-directories such as /vendor and /images. 

GET http://www.kku.ac.th

/vendor/dist/css/bootstrap.css

/vendor/dist/js/jquery_1_11_1.min.js

/images/images_header/header/logo_th.png

/vendor/dist/css/style.css

/images/images_header/header/3c1h.png

/images/images_header/header/lang-en.png

Root

Target Replacement

Leaf

 

Figure 12. Example of tree removal 

4.2 Second-Level Cache 

The main purpose of this level is to achieve high 
accuracy (i.e., high HR and/or BHR) with the support 
of larger storage. Thus, we propose the use of an 
intelligent caching algorithm that uses one of the soft 
computing techniques (ELM) and its enhancement for 
classification. There are four components: the ELM 
cache engine, ELM cache replacement, data pre-
processing, and ELM classification. 
ELM cache engine. This module is mainly used to 
respond to the web object request from the first-level 
cache (if missed) by seeking the object in the second-
level storage (ELM caching storage). This module also 
returns “miss” if no such object is available; however, 
the actual object will be returned if found.  
ELM cache replacement. This component functions 
together with the latter two modules of the first-level 
cache. The web objects that are chosen to be replaced 
in the first-level storage will be used as inputs to 
replace objects in the second-level storage. If the 
storage is not full, the web objects will be directly 
stored.  

However, if the storage is full, this module will 
perform ELM testing to determine if the objects should 
be stored based on the ELM training model. If the 
result is “cacheable” or “should be cached”, this 
module will perform the actual cache replacement 
procedure in sequence; otherwise, the particular object 
will be ignored.  

To improve the model precision, after testing, the 
“cacheable” and “uncacheable” statuses will both be 
used to update the re-training process, which will be 
recomputed based on a specific threshold (the cache 
storage size). Here, we used 100%, i.e., all objects in 
storage will be replaced.  
Data pre-processing. This component is used to 
prepare the web object in storage for the next step, 
which is to apply the optimized ELM classification 

scheme. In general, the web objects will be converted 
into a particular format. Here, the characteristics of the 
web query, i.e., HTTP request method (R), URL_ID 
(U), size (S), and HTTP code (hit or miss), are used for 
the transformation into a particular format in the range 
between 0 and 1.  
ELM classification. Once the data, which are a 
representation of web objects, such as the web access 
log, are ready from the previous step, this module is 
mainly used to construct the replacement decision 
criteria (ELM model) to make a final decision about 
which of the objects should be cached or replaced. 
Because various web objects are periodically updated, 
ELM also requires an update of the training to identify 
the caching condition. Note that only a log structure 
(cache trace) will be used for classification to avoid 
cache storage intervention.  

4.3 Intelligent Web Caching Schemes 

This section describes ELM classification 
techniques, particularly in the context of web caching 
and its enhancement. These approaches are used to 
generate the ELM model for testing new web objects. 
Extreme learning machine (ELM). Huang et al. [33] 
first proposed the ELM. The ELM applies a single-
hidden-layer feed-forward network (SLFN), and thus, 
there is no requirement to adjust the hidden node 
weight as in an NN. The key advantage of the ELM is 
that it is a fast training algorithm. 

Figure 13 presents a schematic of the ELM. Given a 
total of N input neurons in the format (xi, ti) such that i 
= 1, 2, 3, …, N, the input xi = (xi1, xi2, …, xiN)T is input 
into the network considering the target ti = (ti1, ti2, …, 
tim)T. The output weight β and the bias (b) are used to 
convert the non-linearity and are derived from the 
equation below (for training purposes).  
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Figure 13. ELM (SLFN) 

 †
H Tβ =  (5) 

The output weight β  can be obtained by resolving 

the least-squares solution as stated in equation (5). 
Here, T denotes the target [t1, t2, …, tN]T and H is a 
hidden node function, such as {hij} | (i = 1, …, N and j 

= 1, …, L), which is derived from hij = g(wj x + b). H† 
is a Moore-Penrose matrix, where the hidden node 
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input weights are wj = [wj1, wj2, …, wjN]T with a bias of 
bj, and g() is the activation function, i.e., hard limit, 
sigmoid, radial basis, triangular basis, or sine.  

During the testing stage, the unknown input x will be 
used in hij = g(wj x + b), and the defined weight (w) 
will be given before applying the activation function. 
The reverse equation below is then used to compute the 
predicted target as shown in equations (6) to (8). 
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ELM for web caching replacement. To apply the 
ELM for web caching replacement, three attributes are 
used as the main features (R, U, S), including the status 
of the cache T (hit or miss). Algorithm 7 presents the 
detailed methodology. First, these X inputs are 
transformed to the range of [0, 1] (line 1), and the input 
weight (w) and the bias (b) are randomly generated 
(lines 2-3). The activation function (H) is subsequently 
applied (line 4), and the output weight (β) is derived 
accordingly (line 5). For testing, algorithm 8 shows 
that, following input transformation, processes similar 
to those of training will be performed to determine the 
cacheable probability (CA) by solving equation (7). 

 
 

Algorithm 7: ELM (Classification) in the Training  
Phase  

Input: X(R, U, S, T)N, TN 
Output: 

, ,

, ,
K N K K N

w Bβ  

1.  Normalize input parameters X in the range [0, 1] 
2.  Generate random input weight 

,K N
w in the range  

[-1, 1] 
3.  Generate random bias 

,K N
b in the range [0, 1] 

4.  Calculate Activation Function 

, ,

( ( , , ) )
K N K N

H G w X R U S b= × +  

5.  Calculate the output weight 
†

K N
H Tβ = ×  

 
 
 
 
 

Algorithm 8: ELM (Classification) in the Testing  
Phase 

Input: 
, ,

, , ,
K N K K N

x w bβ  

Output: CA 
1.  Normalize input parameters x in the range [-1, 1] 
2.  Calculate Activation Function 

, ,

_ ( ( , , ) )
K N K N

H Test G w x R U S b= × +  

3.  Compute Cacheable Probability  

( _ )T
K

CA H Test β= ×  

 
ELM with similarity feature. Although several 
activation functions affect the replacement precision, 
our evaluation (See also Section 5) showed that the 
ELM with a hard limit outperforms the NN, FL, GA, 
and SVM. Thus, the ELM with a hard limit was 
selected for further optimization. This research also 
proposes an additional feature to improve the 
classification precision using the similarity factor or a 
factor to differentiate the two objects. The rationale 
behind this feature is two-fold.  

The first is for in the case that the actual object is 
available. Here, the concept of the hashing sum is used 
to identify the object similarity even though the actual 
URL may be different. We applied “md5sum” [34] to 
generate a fixed size string to represent the whole 
object. The example is as follows: Input = “$md5sum 
nav_logo242.png” and Output = “710544E7F0C828 
B42F51207342622D33.” 

However, there is a computational time trade-off 
relative to the object size because the hash of the entire 
object will be computed. Thus, second, to speed-up the 
time complexity as well as in the case of the 
unavailability of a web object, here, we propose the use 
of a similarity factor (SF), a combination of different 
factors from the only trace structure; this combination, 
called ELM with similarity, is shown in equation (9).  

 

( )

( )
Max Max

LF
CType

SizeSF
LF CType

+

=

+

 (9) 

Where SF denotes the similarity factor, with the 
summation of LF over Size and CType; LF is the total 
length of a specific file name, which corresponds to its 
size (Size); and CType is the content type with its 
encoding format (i.e., application = 1, audio = 2, binary 
= 3, font = 4, image = 5, text = 6, video = 7, and other 
= 8). This summation is also normalized by the 
maximum values of these two factors, i.e., LFMax 

(255) 
and CTypeMax (8).  

5 Performance Evaluation 

In this section, the performance and practicality of 
our proposed techniques are evaluated and compared 
with other existing candidates [14, 17-18, 29] for the 
integration of the traditional caching policy and 
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intelligent systems (NN, FL, GA, and SVM), including 
ELM optimization as well as LFU and LRU as a 
representation of the TCRP. 

5.1 Data Pre-processing 

We selected a well-known real-world web cache 
dataset, IRCache [32], from the proxy log from the 
National Lab of Applied Network Research (NLANR), 
including the access trace from five main proxy servers 
across the U.S. (i.e., UC, BO2, SD, SV, and NY). Note 
that most related evaluations of web caching have also 
used these traces [17-18, 20, 26-30]. The 
implementation of the algorithm into the actual proxy, 
including the proxy placement into the commercial 
(operation) network, is a future consideration due to 
management and administrative policy constraints. 

However, these traces reflect the actual Internet 
usage across the U.S. Because the actual trace includes 
millions of objects, to compare the technique with 
other candidates [20, 26-30], the trace was limited to 
15 days from the fourth quarter of 2015. Note that the 
size of the cache is overwhelmed by the number of 
web objects. Table 2 shows a detailed dataset from 
IRCache. 

Table 2. Web caching dataset (IRCache) 

Proxy 

Dataset 

Proxy 

Server 
Location #Records 

Duration 

(days)

UC uc.us.ircache.net Urbana–Champaign, IL 1,548,547 15 

BO2 bo.us.ircache.net Boulder, CO 1,357,461 15 

SD sd.us.ircache.net Silicon Valley, CA 1,249,572 15 

SV sv.us.ircache.net San Diego, CA 1,189,115 15 

NY ny.us.ircache.net New York, NY 1,587,544 15 

 
The trace files acquired from the IRCache record all 

requested web information that was used to make a 
decision such as web cache replacement. The files 
include seven main attributes: the timestamp (with 
socket status as closed) in milliseconds (ms), the client 
address (IP address of the requester to the proxy 
server), the tag and HTTP code (the status of 
accessible codes, i.e., hit or miss), the size of the web 
object in bytes, the request method (e.g., GET, POST, 
or PUT), the URL, and the content type (such as html, 
video, or audio). 

5.2 Performance Measurement Metric 

There are two main metrics for the performance of 
the web caching scheme used in this study. 
Classification metric. This metric is mainly used to 
state the classification precision of the intelligent 
system or if the particular web object should be cached. 
Here, the metric is the Corrected Classification Rate 
(CCR) [9], as given by equation (10) below.  

 (%)
TP TN

CCR
TP FP FN TN

+
=

+ + +

 (10) 

Where TP (True Positive) is the classification result 
whereby positive training data are evaluated as positive, 
TN (True Negative) denotes the classification result 
whereby negative training data are evaluated as 
negative, FP (False Positive) is the classification result 
whereby negative training data are evaluated as 
positive, and FN (False Negative) denotes the 
classification result whereby positive training data are 
evaluated as negative.  
Two-level web cache metric. Two well-known metrics, 
HR and BHR, are commonly used to determine the 
overall performance of web systems. The HR is the 
ratio of the number of web objects that the proxy 
server can deliver directly back to the client, and its 
corresponding size is denoted as BHR [7, 8, 13, 26-30].  

In addition, we measured the computation time 
during the evaluation. To reflect the overall 
performance, we performed both unit and system 
testing. We measured the computational complexity of 
both the classification analysis and the two-level web 
caching.  

5.3 Simulation Setups and Configurations 

There are two metrics used for the evaluation 
process, including the computation time measurement. 
Thus, there are also two main configurations, which 
are stated below.  
Classification configuration. Our proposal is based on 
ELM classification optimization, which was originally 
obtained from Huang et al. [33] using the MATLAB 
tool. There are two main scenarios:  
Scenario 1. The following four well-known soft 
computing techniques that are applied to web cache 
replacement policies [7] are used to evaluate the 
classification precision: NN [12], FL [16], GA [18], 
and SVM (RBF) [29]. RBF was selected due to its 
superior performance among the different kernel 
functions including time complexity measurements 
(training and testing). The parameters related to the 
intelligent scheme include configurations that follow 
the recommendation from the literature [7, 12, 16, 18, 
29].  

For example, the NN applies a BPNN with a range 
of weights in [-1, 1] [12]. Four main variables (i.e., 
time stamp, size, accumulative frequency, and response 
time), including 12 fuzzy rules, were used [16]. 
Similarly, three of the variables, excluding the 
accumulative frequency, were used to compute the 
fitness for the GA [18]. 

For this scenario, the dataset was acquired from SD, 
with 1,249,572 transactions over 15 days. The 
evaluation applied K-fold cross validation [9], in which 
K is set to 4 [20, 23, 27, 30] (i.e., 75% for training and 
25% for testing) for four rounds. We limited the 
maximum cache size to 1 GB to be consistent with the 
setups in scenario 2 and 3. 
Scenario 2. We evaluated the practical use of our 
proposed technique using the ELM [33] under various 
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activation functions, i.e., sine, sigmoid, hard limit, 
triangular basis, and radial basis functions, using CCR 
and again with time measurements. The same dataset 
used in Scenario 1 was applied to compare the 
performance.  
Two-level web cache configuration. With the results 
from the first two scenarios, this scenario (Scenario 3) 
was evaluated to determine the actual caching 
efficiency in terms of HR and BHR. We adapted other 
comparative hybrid schemes to evaluate the 
performance, one of which was proposed by Ali et al. 
[29], who integrated LRU with an SVM (here called 
SVM-LRU). Similarly, the other scheme was proposed 
by Sathiyamoorthi and Ramya [35] but represents the 
integration of an SVM and LFU (here called SVM-
LFU).  

As discussed in Section 2, LRU and LFU were used 
for comparison. The emulation is based on WebTraff, 
which is a module for evaluating caching efficiency 
with real-world traces. It was installed on a system 
running Linux Ubuntu 12.04 LTS and with a 2.66 GHz 
Intel(R) Core (TM) Quad Q8400 CPU, 4 GB DDR-
SDRAM, and a 250 GB, 5400 rpm hard disk. Five 
main web access datasets, with cache sizes of 2k 
ranging from 3 to 10, were evaluated.  

5.4 Simulation Results and Discussion 

Three main scenarios are discussed here. To 
compare the performance of the soft-computing-based 
classifications, i.e., NN, FL, GA, and SVM, for the 
first scenario, Table 3 shows the CCRs of the different 
soft computing approaches; higher scores indicate 
better performance. The classification performance of 
the NN is outstanding (94.90%) compared with the 
approximately 85% performance of the FL and GA; 
however, the accuracy of the SVM, 93.44%, is not 
significantly different from that of the NN. 

Table 3. CCRs of Soft computing approaches 

Soft Computing CCR Time (ms) 

NN 94.90 4,580 

FL 83.86 430 

GA 85.38 650 

SVM 93.44 1,125 

 
Considering the computation time complexity, as is 

generally known, the precision of the NN is the best 
but is achieved at a high computation time trade-off, 
i.e., 4,580 ms. In contrast, the FL is outstanding in 
terms of performance (only 430 ms) but suffers from a 
precision trade-off. Similarly, the computation time of 
the GA is almost eight times lower than that of the NN. 
The SVM requires approximately 1 second, which is 
between the times of FL/GA and the NN (but again 
with high precision).  

Table 4 compares the performance (CCR) of the 
ELM classification with various activation functions 

(i.e., sine, sigmoid, hard limit, TRIBAS, and RBF) in 
Scenario 2. In general, the ELM (all functions) can 
achieve a high classification rate (greater than 94%), 
although the ELM with the hard limit function is 
outstanding (95.15%), and the other four methods are 
similar (average of approximately 94.88%). 

Table 4. CCRs of ELM (Various activation functions) 

ELM (Activation Function) CCR Time (ms) 

Sine 94.85 1,211 

Sigmoid 94.85 1,280 

Hard limit (HARD) 95.15 1,274 

Triangular basis (TRIBAS) 94.80 1,211 

Radial basis (RBF) 94.77 1,291 

 
The computational times of all of the functions are 

similar (between 1,211 ms and 1,291 ms), but that of 
the RBF is the worst. The sine and TRIBAS functions 
obtained the best performance (1,211 ms) but at lower 
CCR compared with the ELM with HARD, which was 
then used for our subsequent experiment due to its 
superior classification rate and time complexity trade-
off (found not to be significantly different from the 
other functions). 

 

Comparison of Table 3 and Table 4 shows that the 
ELM (hard limit) achieves the highest recognition rate 
(95.15%); thus, it was again selected for further ELM 
optimization.  

Figure 14 and Figure 15 compare the performance of 
the SVM with LRU [29] and LFU [35] for Scenario 3, 
including our enhancement (H-ELM-LFU) as well as 
the traditional LRU and LFU. In general, the HR trend 
of the five datasets is similar: the larger the cache size, 
the higher the HR (see Figure 14). This relationship is 
reasonable because there is a large opportunity for web 
objects to be available in the cache.  

Given a particular cache replacement policy, the 
performance of H-ELM-LFU is generally outstanding; 
it ranges from approximately 3% to 38% for cache 
sizes of 8 MB to 1024 MB. The performances of the 
other classifications descend in the order of SVM-LRU, 
SVM-LFU, LFU, and LRU. The performances of the 
last two approaches are similar (due to the use of only 
traditional caching). 

Although there is an obvious effect from the hybrid 
model, H-ELM-LFU still maintains an outstanding HR 
(17.96% on average); its average performance 
improvements on five datasets over SVM-LRU and 
SVM-LFU are 21.3% and 24.6%, respectively. In other 
words, the average HRs of these two methods are only 
14.81% and 14.41%. In addition, LFU is superior to 
LRU; the HRs are approximately 9.23% and 9.04%, 
respectively. Compared with H-ELM-LFU, the 
percentage improvements are over 94.5% and 98.7%, 
respectively.  
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(a) UC dataset 
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(b) SV dataset 
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(c) SD dataset 
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(d) NY dataset 
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(e) BO2 dataset 

Figure 14. % Hit rate vs. cache size (MB) 
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(b) SV dataset 
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(c) SD dataset 
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(d) NY dataset 
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(e) BO2 dataset 

Figure 15. % Byte hit rate vs. cache size (MB) 
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Figure 15 shows the BHR values that correspond to 
the HR values in Figure 14 but with different orders 
(here, SVM-LFU is better than SVM-LRU). The trend 
closely follows that of the HR; the larger the cache size, 
the higher the BHR. The performance of H-ELM-LFU 
remains outstanding, namely, up to 79%. LFU and 
LRU more strongly affect the BHR than the HR (up to 
50% and 45%).  

The performances of the two hybrid approaches are 
similar (SVM-based approaches) and are also similar 
to H-ELM-LFU. However, the performance of H-
ELM-LFU is again outstanding (61% on average) and 
in the order of SVM-LFU, SVM-LRU, LFU, and LRU. 
The average performance improvements of H-ELM-
LFU over the other four methods are 21.1%, 33.65%, 
87.87%, and 94.8%, respectively. 

In addition, Figure 16 shows the computation time 
performance. Here, we measured over the entire 
caching epoch and then performed the average over 
five datasets. In general, with larger cache size, the 
computation time is reduced due to the additional 
space available to perform the replacement. The timing 
ranges from approximately 200 to 40 seconds with 8 
MB to 1024 MB cache sizes. The computation times 
for all techniques (using traditional caching or the 
hybrid model) are not significantly different due to the 
parallel processing of both caching levels.  
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Figure 16. Web caching performance: computation time  

6 Conclusions and Future Work 

This study evaluated a two-level web caching 
system that was designed to achieve high HR and BHR 
with a resource constraint (i.e., caching storage), 
including support for real-time caching. The fast 
traditional caching policy was used for the front end, 
and an intelligent system was applied to create caching 
opportunity information for the back end to enhance 
the replacement precision. 

Several traditional caching policies (i.e., FIFO, LRU, 
LFU, and GDS) were also evaluated, and the results 
demonstrated the outstanding performance of LFU. 
Thus, LFU was selected for the front end. Several soft 
computing approaches, including NN, FL, GA, and 
SVM, were also examined for the second-level cache. 
Our proposed method, which is called ELM 
optimization (ELM Similarity with a Hard Limit), and 
the seamless integration with the traditional caching 

policy (LFU) were studied (Hybrid ELM-LFU or H-
ELM-LFU) and found to provide an HR of nearly 38% 
and a BHR of 79%.  

Although our study indicates that H-ELM-LFU 
performance is a superior web caching replacement 
system, additional investigations, assumptions, and 
constraints, such as heterogeneous caching access and 
large-scale datasets that include large-scale caching, 
should be explored. Other hybrid schemes and 
optimizations of soft computing should also be 
investigated in terms of time complexity trade-offs. 
Due to the limitation of proxy placement access by the 
Internet Provider, practical implementation of H-ELM-
LFU should also be investigated further. These topics 
are all subjects of ongoing research. 
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