
A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 725

A Two-Level Intelligent Web Caching Scheme with a Hybrid

Extreme Learning Machine and Least Frequently Used

Phet Imtongkhum1, Chakchai So-In1, Surasak Sanguanpong2, Songyut Phoemphon1*

1 Department of Computer Science, Faculty of Science, Khon Kaen University, Thailand
2 Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Thailand

phet@kkumail.com, chakso@kku.ac.th, surasak.s@ku.ac.th, songyut_p@kkumail.com

*Corresponding Author: Chakchai So-In; E-mail: chakso@kku.ac.th

DOI: 10.3966/160792642018051903010

Abstract

The immense increase in data traffic has created

several issues for the Internet community, including long

delays and low throughput. Most Internet user activity

occurs via web access, thus making it a major source of

Internet traffic. Due to a lack of effective management

schemes, Internet usage is inefficient. Advances in

caching mechanisms have led to the introduction of web

proxies that have improved real-time communication and

cost savings. Although several traditional caching polices

have been implemented to increase speed and simplicity,

cache replacement accuracy remains a key limitation due

to cache storage constraints. Our contribution concerns

the algorithmic investigation of intelligent soft computing

schemes to enhance a web proxy system to improve

precision for reproducibility. This research also proposes

a two-level caching scheme; the first level is least

frequently used (LFU), and an extreme learning machine

(ELM) is used for the second level. A traditional ELM

for web caching is further optimized with object

similarity factors. The proposed scheme is evaluated and

compared to a traditional caching policy and its

integration with intelligent caching using a well-known

dataset from IRCache. The method is shown to achieve

good performance in terms of high hit and byte hit rates.

Keywords: Extreme learning machine, Least frequently

used, Proxy, Replacement, Web caching

1 Introduction

Internet technology is now accessible around the
world, leading to widespread Internet use and
increased Internet traffic. According to a 2015 report
by the International Telecommunication Union (ITU),
the Internet community includes more than 3.2 billion
people, and usage continues to increase [1]. This rapid
increase has led to traffic of up to 72.5 exabytes per
month [2], of which more than 98% is web-based
Internet traffic [3]. The infrastructure of the Internet
has not been able to keep pace with growth because of
limited investment by Internet Service Providers (ISPs)

[4-5].
Consequently, many studies and applications have

been developed to not only evaluate policy-based
approaches of multi-tier ISPs but also efficiently use
the existing Internet infrastructure, particularly from
the user perspective, including factors such as the
throughput and delay, which contribute to the quality
of accessible web objects. Web proxies (web caching)
have been developed to address this issue. The key
concept that underlies proxy/caching is similar to that
of traditional caching of the memory hierarchical
structure of a CPU, including the CPU cache, RAM,
and hard disk [6]. The inter-memory levels are
positioned such that the time required to acquire data
due to speed and distance is reduced. The efficacy of
this structure can also be increased by accessible data
repetition. This perspective is then applied to caching
web objects to reduce the access time for long-distance
Internet use, including bandwidth optimization with
repetitive accessible patterns of Internet users.

There are two types of proxies: forward and reverse
[5]. The key difference between these proxies is based
on their objectives and locations. A forward proxy is
placed between the clients and the Internet (outbound)
to reduce the delay in acquiring web objects that are far
from the client location. The sub-sequence client, if
present, can directly retrieve the objects from the proxy
instead of re-traversing to the original source of the
web objects. In contrast, a reverse proxy is positioned
in front of the server farms that are used for balancing
heavy loads from large accesses, including
computational tasks to reproduce a particular web
object within the proxy, and directly forwards the
objects to the requester without the need for re-
computation at the server.

Web caching has been applied by numerous
organizations and providers; however, there are several
trade-offs such as the need for additional hardware and
software for cache management and extra computational
processes. In addition, caching can only be applied to
static data access. Due to these constraints, particularly
caching storage, web caching further requires a smart

726 Journal of Internet Technology Volume 19 (2018) No.3

caching replacement policy [7] to achieve higher
utilization of bandwidth as well as short delays. For
example, a superior replacement algorithm should
select non-repetitive objects from the cache to
minimize space (caching storage).

Generally, a traditional web caching replacement
policy (TCRP) simply applies a single (or a few)
factor(s), such as timing, ordering, frequency, or size,
to determine the object replacement. The key
advantage of a TCRP is its speed due to its low
complexity, which makes TCRPs suitable for real-time
or online communication [8]. The trade-off, however,
of a TCRP is the replacement precision, which will
probably lead to the un-optimized use of caching
storage and thus high cost and larger budgets.

Soft computing has recently been proposed to
resolve the problem of uncertainty and a non-linear
solver. Soft computing is used in science and
engineering problems [9], such as clustering and
classification, and particularly in the areas of
recognition and prediction, including web caching
replacements [10]. Several classes of soft computing,
such as Neural Networks (NNs), Fuzzy Logic (FL),
Support Vector Machines (SVMs), and Evolutionary
Computation (EC), can be applied to a particular
problem based on the characteristics of the soft
computing; their key advantages are their high
precision with comparable computational complexity
trade-offs with heuristic approaches.

Consequently, in addition to providing a detailed
discussion of how to apply other applications of soft
computing to web caching algorithms for
reproducibility, this research proposes a combination
of the two approaches (i.e., high speed and high
precision) in the form of a two-level web caching
scheme. To achieve the high-speed retrieval of web
objects for clients, a TCRP is selected for the first
(small) level of caching storage.

To achieve higher precision with a timing trade-off,
soft computing approaches are then applied as the
second level for (larger) caching storage. The TCRP is
investigated to select the best algorithm, although it is
not limited to this algorithm; we then select an extreme
learning machine (ELM) from several traditional soft
computing techniques for use as the second level
replacement policy. An enhancement of the ELM with
respect to similarity is also proposed; these methods
are denoted Hybrid ELM-LFU (H-ELM-LFU).

This article is organized as follows. Section 2
provides a brief overview of web caching schemes and
particularly traditional caching replacement and
intelligent caching classification. Section 3 explains the
techniques of the present work, including the use of
intelligent caching and its integration. The concept of
our proposed two-level caching scheme, including an
ELM and its enhancement, is discussed in Section 4.
The performance of our proposed scheme is compared
with other state-of-the-art soft computing applications

with traditional caching replacement policies in
Section 5. Finally, Section 6 offers conclusions and
possible future research.

2 Overview of Web Caching Replacement

Schemes

This section provides a brief overview of web
caching replacement schemes categorized into two
classes: traditional caching replacement policies and
intelligent caching schemes. However, the focus is on
soft-computing-based schemes.

2.1 Traditional Caching Replacement Policy

(TCRP)

Although several caching schemes have been
proposed, e.g., Bélády, Most Recently Used, Random
Replacement, Low Inter-reference Recency Set, and
Adaptive Replacement Cache [11], the focus here is on
well-known (primitive) caching techniques applied to
the context of web caching, including First In First Out
(FIFO), Least Recently Used (LRU), Least Frequently
Used (LFU), and Greedy Dual Size (GDS). Note that
several of their derivatives, such as LRU-MIN and
Hierarchical GD, are also available, which also results
in greater computational work; however, again, each of
these methods can be applied for the selection of the
first-level cache for our proposed hybrid model.

These schemes have been adopted from traditional
time scheduling, which is used in CPUs, the queuing
problem, and particularly in high-speed queuing
applications [6]. These schemes apply simple statistical
analyses, and their key advantage is their simplicity
(i.e., low computational complexity) such as from
considering only a single (or only a few) factor(s)/
parameter(s).

FIFO can be considered a pioneering scheduling or
replacement scheme that is based on arrival time. In
other words, the oldest web object (earliest timestamp)
will be selected for replacement first, and this process
is iterative based on the time domain.

LRU considers the time to access a particular web
object in the final replacement decision instead of
replacement ordering. This algorithm assumes that
recent objects will be frequently used.

LFU assumes that the greater the number of
accessible objects, the higher the probability of being
cached. LFU applies the accumulative frequency of
web access to make the replacement decision; low-
frequency objects will be selected first for replacement.

GDS can be considered a functional-based model
that utilizes two factors: cost and size. The relationship
between these two factors is given by the equation
below, where H denotes the priority factor of
replacement, c (cost) is a co-efficiency factor that
ranges from 0 to 1 and s is the size of a particular web
object (e.g., bytes), The lower the value of H, the

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 727

higher the probability of replacement.

c

H
s

= (1)

2.2 Soft Computing for Web Caching

Replacement

As previously discussed, soft computing has
recently been optimized to solve science and
engineering problems [9] and is particularly suitable as
a non-linear solver for uncertainty. There are several
classes of soft computing (e.g., NN, FL, SVM, and EC
[12-15]), each of which has several derivatives; for
example, Genetic Algorithms (GAs), Differential
Evolution (DE), and Ant Colony Optimization (ACO)
are representatives of the EC class. Each solution is
applicable to many problems.

Note that the focus of this study is on the practical
integration of soft computing with web cache
replacement. Consequently, the discussion is based on
a well-known approach (available) that uses a
representation of each class: NN for Multilayer
Perceptron (MLP) with Back Propagation (BPNN), FL,
GA, and SVM.
Neural network (NN) for web caching replacement.

An NN is a mathematical model that is used to imitate
the human brain in performing an intelligent task [12];
it integrates computational units (neurons) in multiple
layers, where the layers are connected by adjustable
weights. Traditionally, there are three layers: the input,
hidden, and output layers. This research applied MLP
with a BPNN (Figure 1).

x
1

1

N

z
i

Input Layer Hidden Layer Output Layer

x
2

x
N

.

.

.

1

N

1… L

.

.

.

.

.

.

Back Propagation

Figure 1. A neural network for web caching

An NN includes two phases: training and testing
(this also applies to SVMs and our proposed ELMs,
including their derivatives, as will be discussed below).
The training phase is conducted to retrieve the weights
of the input (w_in) and output (w_out) with the
constraint of the least mean square error (LMSE) given
as the objective function E(t), as stated in the following
equation:

() ()

2 2

1 1 1 1

() (()) (() ())
N L N LK K

i i i

k i k i

E t e k d k z k

= = = =

= = −∑∑ ∑∑ (2)

where K denotes the number of epochs (rounds), N(L)
is the number of hidden nodes in the Lth layer, di(k)
denotes the target value (actual value) of node i, and z
is an output value, such as y×w_out, in which y is a
function of the input x, w_in, and bias. For the testing,
given the stored weights from the training process, i.e.,
w_in and w_out, the cacheable probability of the cache
being replaced (CA) is computed using the equation
below, where the input X_test, i.e., the HTTP request
method (R), UID (U), and size (S), are the testing input
values.

1
_ ()

1 exp((_ _))

T
w out

X test w in
×

+ − ×

 (3)

Algorithm 1 and Algorithm 2 show the web cache
replacement scheme when the NN is applied in both
the training and testing phases. For the training, w_in
and w_out are first randomly generated (line 1) in the
range of -1 to 1 and are then updated based on the
LMSE. The inputs X(R, U, S) of the web object
attributes are transformed to the values in the range of
[-1, 1] for R (such that GET is 1 and the others are -1)
and the range of [0, 1] for U and S divided by 10N

where N is the number of digits. These forms are then
computed based on an activation function (a sigmoid
function is used here) to generate the output by
multiplying by the input weight w_in (line 4). The
cacheable probability (CA) will be estimated with the
output weight w_out (line 5).

Algorithm 1: NN in the Training Phase

Input: (, ,) , , ,
N N

X R U S Y K N

Output: , () (),
inN N L outN L

w w

1. Generate Random Weight (, () (), _
inN N L N L

w w out) in

 the range [-1, 1]
2. WHILE (K epoches)

3. WHILE (N records)
4. Calculate Output from Activation Function

() 1, ()[] { (, ,)[] _ }
N L N N N L

y j sigmoid X R U S j w in
+

→ ×

5. Calculate Cacheable Probability

() ()[] _
N L N L

CA y j w out= ×

Calculate Cacheable Error
[] []error j CA Y j= −

7. Adjust Output Weight

[] []_ ([])T
N L N L

w out error j y− ×

8. Adjust Input Weight
2

, () ()_ { [] _ } (1 ([]))

(, ,) }

T

N N L N L

T

N

w in error j w out y j

X R U S

− × × −

×

9. ENDWHILE
10. ENDWHILE

728 Journal of Internet Technology Volume 19 (2018) No.3

Algorithm 2: NN in the Testing Phase

Input:
, () ()(, ,) , ,

N N N L N L
test R U S in out

X w w

Output: CA

1. Calculate Activation Function

, ()() (, ,)()
N N N L

N L test R U S in
y sigmoid X w= ×

2. Calculate Estimated Cacheable Probability

() ()_ ()T
N L N L

CA w out y= ×

Next, the approximated error is computed from the

CA and the actual target (Y) (line 6). The output weight
will then be adjusted based on the error (line 7) as well
as the input weight (line 8). These processes will
iterate for K epochs, leading to the final appropriate
weights.

Several steps can be used to test the NN (with a fast
testing process) based on the trained inputs (Algorithm
1) as shown in Algorithm 2. First, the testing web
object attributes are fed into the activation function and
multiplied by the input weight w_in (lines 1-2), the
approximation of the CA is derived from the output
weight, and the result is derived from the activation
function. The CA will be used again as a decision for
caching; a value greater than 0.5 indicates caching and
vice versa.
Fuzzy logic system for web caching replacement. A
Fuzzy Logic System (FLS) is used to manage
reasoning in which there is an approximation that does
not provide the exact solution. In general, the true
value will be in the range from 0 to 1. The four main
processes are described below. The example
corresponds to the Mamdani fuzzy system due to its
key advantage of simplicity as our selection criteria
[16].

A fuzzifier is used to transform the input data
mapping to the defined membership functions to
determine the crossing points of each function such as
Gaussian, trapezoidal, triangular, generalized bell, and

sigmoid functions.
A fuzzy rule is used to create the mapping between

the input and output given its membership function.
For example, for the triangular function and twelve
pre-defined rules (Table 1), Figure 2 to Figure 5 show
three inputs (Frequency - F, Time - T, and Size - S) and
the input (weight) of fuzzy systems using the rule-
based approach shown in Table 1: very high (VHI),
high (HIG), medium (MED), low (LOW), and very
low (VLO) [17].

Table 1. Examples of fuzzy rules

IF

Frequency

AND

Time

AND

Size

THEN

Weight

LOW VHI MED VHI

LOW HIG HIG VHI

MED VHI HIG VHI

LOW VHI HIG VHI

LOW HIG HIG HIG

MED HIG LOW MED

MED VHI MED HIG

MED HIG HIG HIG

HIG VLO HIG LOW

HIG HIG HIG LOW

LOW MED HIG HIG

MED HIG MED MED

0

0.5

1

0 13 25

LOW MEDIUM HIGH

Figure 2. A fuzzy membership function (Frequency)

0

0.5

1

0 150 300

LOW MEDIUM HIGH

Figure 3. A fuzzy membership function (Time)

0

0.5

1

0 0.55 1.1 1.65 2.2

VERYLOW LOW MEDIUM HIGH VERYHIGH

X 104

Figure 4. A fuzzy membership function (Size)

0

0.5

1

0 0.33 0.66 1

LOW MEDIUM HIGH VERYHIGH

Figure 5. A triangular function (Weight)

A fuzzy inference engine is used to derive the
output (weight) given the inputs, such as the size, time,
frequency and rule-based weight with aggregation
methods such as intersection operations. The output
(weight) here is the Replacement Probability (RP).

A defuzzifier is used to compute the output based
on the Center of Gravity (CoG) over the derived output
weight (RP). This output (in the range between 0 and 1)

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 729

is then used as the CA because if the output is greater
than 0.5 [17], the representation of the cache status is
“cacheable”; otherwise, it is “uncacheable” or to be
replaced.

Algorithm 3 shows an example methodology for
web caching using a fuzzy system. First, a set of
interesting parameters are considered as a threshold;
we consider the entire sets but only three inputs: size,
time, and frequency. The membership function that
corresponds to these inputs and the input weight (w_in)
are then generated using the fuzzy rule (lines 1-3). The
fuzzy inference engine is then applied with the
aggregation method (line 4). Once the output is
generated (RP), the CoG is computed, which results in
the output (out) (line 5). Finally, this output is used to
indicate the caching stage (CA) (line 6).

Algorithm 3: Fuzzy Logic for Web Cache Replacement

Input: X(S, T, F)

Output: CA

1. Generate Membership Function for the Inputs X(S,

T, F)

2. Generate Membership Function for input weight
w_in

3. Generate Fuzzy Rule (S, T, F, w_in)

4. Apply Fuzzy Inference Engine (FIE) with Aggregation
RP ← FIE(S, T, F, w_in)

5. Calculate Output (out) from the CoG
6. Calculate CA based on out

Genetic algorithms for web caching replacement.
GAs are traditional ECs [18] and include three main
steps as follows:

Population selection is used to properly select the
population members with a specific size as the parent
of the current generation; here, the selection for
replacement occurs from the top ten least accumulative
frequencies (provided by the ranking algorithm).

The genetic operator is then used to generate better
children. There are two common operators. The first
one is “crossover”, an operator that functions as the
blender of two different genes with a common cut
(cross) to create different genes. Here, the encoding is
the representation of the URL (including the full path)
with the cut on only the domain path (domain and
domain suffix, including the subdomain if available),
as shown in Figure 6.

Parent

http://blog.eikeland.se/images/-openwrt-on-hama-mpr-a1-v2-2/201204160226342556.jpg
http://www.rentacomputer.com/blog/wp-content/uploads/2012/09/storage-servers.jpg

Child

http://blog.eikeland.se/blog/wp-content/uploads/2012/09/storage-servers.jpg

http://www.rentacomputer.com/images/-openwrt-on-hama-mpr-a1-v2-2/201204160226342556.jpg

�

�

Figure 6. Genetic crossover operator for web caching

The second operator is “mutation”, which is used to
randomly generate a new population. Here, our

encoding is used to randomly replace the first tier
domain with other domains, from .com to the top ten
domains (gTLD), including .net, .org, .info, .biz,
.us, .xyz, .mobi, .asia, and .club (see Figure 7) [19].

https://www.google.com/images/logos/google_logo_41.png

https://www.google.net/images/logos/google_logo_41.png

https://www.googleinfo/images/logos/google_logo_41.png

https://www.google.org/images/logos/google_logo_41.png.

https://www.google.biz/images/logos/google_logo_41.png

https://www.google.us/images/logos/google_logo_41.png

https://www.google.xyz/images/logos/google_logo_41.png

https://www.google.mobi/images/logos/google_logo_41.png

https://www.google.asia/images/logos/google_logo_41.png

https://www.google.club/images/logos/google_logo_41.png

Mutation

Figure 7. Genetic mutation operator for web caching

Replacement is used to update the population - the
children after the second stage replace those in the
scaled population given the utility (i.e., lowest
frequency).

Algorithm 4 illustrates the methodology for web
cache replacement using the GA with the output of the
URL (to be replaced if it exists). First, the URL
population is selected based on LFU (i.e., the top ten
least access-providing ranking algorithms (lines 1).
Next, the crossover operator is applied to create two
possible children from the full URL with the concept
of the only domain section (URLDomain) and its path
(URLDomain_Path) (line 2). The mutation operator is
subsequently applied by creating the URL with the first
tier domain name from other names from the top ten
gTLD (line 3). The generated URL is compared with
the URL in the caching storage if it exists as the first
candidate for replacement.

Algorithm 4: Genetic Algorithm for Web Cache
Replacement

Input:
s

URL

Output: URL

1. Initial Population (URL) with a specific threshold
new population cache≤ Top 10 LFU (descending orders)

2. Perform Crossover Operator
URL[1] CROSS URL[2] =

(URLDomain[1],URLDomain_Path[2]) and

 (URLDomain[2],URLDomain_Path[1])

3. Perform Mutation Operator based on x and y within
Top 10 gTLD
URLDomain[x],URLDomain_Path[x] →

URLDomain[y],URLDomain_Path[x]

Support vector machine for web caching replacement.
An SVM is a supervised learning method that is used
for classification. A set of training data will be mapped
into two classes by an SVM, which makes it a non-
probabilistic binary linear classifier (-1 or +1) [20].
Here, each class represents the stage of caching: cache
or not cache (to be replaced). An SVM is generally

730 Journal of Internet Technology Volume 19 (2018) No.3

modeled as a representation of points in space mapped
to separate the category that has the highest margin.

Figure 8 and Figure 9 show a representation of a
linear classification given the transformation from an
N-dimensional input vector X to feature vectors that
provide the objective function D(X) using equation (4)
below.

(w.x) + b = +1

(w.x) + b = -1

(w.x) + b = 0

Figure 8. SVM linear classification

g
m

g
1

g
2

.

.

.

b

D(x)

x
1

x
N

y
i

w
1

w
2

.

.

.

w
m

.

.

.

Figure 9. SVM structure

1

() 0 ()

m

j

j

D X W X W sign w g x b

=

⎧ ⎫⎪ ⎪
= ⋅ + = +⎨ ⎬

⎪ ⎪⎩ ⎭
∑ (4)

Where the input X = {x1…xN} will be fed into the
model (HTTP request method - R, UID - U, and size -
S) with weights W = {w1…wm} such that N is the total
number of input nodes, m is the number of kernel
function nodes, and b denotes the bias. To derive the
weight, Lagrange multipliers will be applied in terms
of α (a scaling factor that is the gradient of the function
for finding the largest or smallest value). Here, yi is the
target value in the range of [-1, +1] (either hit or miss).
g(x) denotes an SVM kernel function such as a linear
function, polynomial function, radial basis function
(RBF), or sigmoid function.

Algorithm 5 shows the SVM (classification) in the
training phase. Here, we apply R, U, and S as inputs
into the kernel function (line 1), which is the RBF in

this case. Here, gamma (γ) is
2

1

2σ

 such that σ is a

free adjustable parameter; however, the implementation
of the SVM (LIBSVM [21]) configures this number to
1. The result is used to calculate the weight (w) and
bias (b) in the form of Lagrange multipliers (line 2).
Similar steps are applied for testing; however, only the
test’s individual input (x) (here, we only feed one line
as input) will be applied to the kernel function over the

training sets (X). Equation (4) will subsequently be
applied to compute the objective function (D) and to
determine the CA; here, 1 represents cacheable or else
(Algorithm 6).

Algorithm 5: SVM (Classification) in the Training
Phase

Input: X(R, U, S)N, YN

Output: ,
m

w b

1. Apply Kernel Function
2() exp(|| [] ||) | 1g X X X j j Nγ= − − ∈ �

2. Derive Weights (and Bias (b) based on Lagrange
 Multipliers

Algorithm 6: SVM (Classification) in the Testing
Phase

Input: x(R, U, S), ,
m

w b

Output: CA

1. Apply Kernel Function
2() exp(|| [] ||) | 1g X X X j j Nγ= − − ∈ �

2. Compute the objective function (D) from equation
(4)

3. Calculate CA based on the objective function (D)

3 Literature Survey

Several previous studies have described derivatives
of traditional caching schemes, e.g., FIFO, LRU, LFU,
and GDS [22], for online caching. However, these
schemes have a key limitation in their replacement
precision, especially given diverse web content
(dynamic) [10-11]. To address this limitation, soft-
computing-based approaches, including web caching,
have recently been used to heuristically seek the
optimal solution with a timing trade-off.

Previously, soft computing was used as a selection
procedure for objects in memory. For example, Khalid
et al. [12, 14] proposed a selection method called
KORA (Khalid Shadow Replacement Algorithm),
which was a pioneering technique in the integration of
NNs for enhancing cache replacement schemes.

Considering caching strategies, Cobb and ElAarag
[23] improved KORA by introducing and enhancing
Neural Network Proxy Cache Replacement (NNPCR)
using a BPNN for web caching replacement based on a
rating score of 0 to 1 using five main inputs: URL,
frequency, size, timestamp, and number of requests.
The results revealed a considerable improvement in
performance compared to the traditional web caching
policy.

However, a key limitation of the BPNN is its
computational complexity, which is generally not
suitable for a real-time caching. In addition to an NN,
Calzarossa and Valli [16] proposed FL as a
replacement scheme. Four main parameters (i.e., size,

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 731

timestamp, accumulative frequency, and response time)
are transformed into fuzzy rules, including low,
medium, high, and very high. Their results indicated an
improvement in caching replacement efficiency,
particularly with small caching storage.

Most of the techniques described above directly
applied soft computing as the caching replacement
policy; however, its key limitation is its high
computation time, especially when properly used for
on-line computation. Therefore, several recent
proposals have described hybrid approaches that use
both TCRP and soft computing [24].

Another soft computing class, EC, has been
evaluated as a cache replacement scheme. For example,
Vakali et al. [18] proposed a web cache replacement
policy that uses a GA to determine the density of web
objects, including the retrieval rate (the product of
latency and bandwidth), and then uses the density to
construct the replacement rule. The results revealed a
higher Hit Rate and Byte Hit Rate (HR and BHR) than
other TCRP methods.

Sulaiman et al. [25] applied Particle Swarm
Optimization (PSO) instead of a GA. The computation
of PSO was used to analyze the distribution of web
objects before feeding it into LFU for final
replacement. The precision and time complexities of
this method were superior to those obtained using a
BPNN. In addition, recently, Samuel et al. [26]
improved a traditional Naïve Bayes (NB) technique
with multiple nodes to construct the tree and reported
superior performance with GDS hybridized with
frequency; however, with large cache size, the
precision tends to be reduced.

Note that the hybrid models discussed above were
integrated into a single storage, resulting in a key
limitation on model interruption between TCRP and
soft-computing-based approaches. Thus, there have
also been some approaches addressing the concept of
caching separation such as online and offline caches.

Ahmed and Shamsuddin [27] investigated a
combination of these two approaches, called a Neuro-
Fuzzy System (ANFIS), to predict whether a web
object will be re-accessed within a given time period.
In this approach, the caching schemes are either short
term or long term (similar to online and offline caches).
The first caching scheme applies LRU for fast retrieval,
and the second scheme uses ANFIS. The four
parameters, URL, time, frequency, and size, were also
used as long-term cache parameters.

Similar to Samuel et al. [26], however, Ali et al. [28]
also proposed NB for classification using a Bayesian
network to identify two classes: high probability to use
or not use again. Again, two components, similar to the
long-term and short-term caches that were proposed by
the same group of authors [27], were designed and
found to achieve better performance.

Note that the same group of authors also considered
an SVM instead of NB for classification [29]. However,
here, GDSF was selected for the second component.
The results showed an improvement in the efficacy of
the replacement gain. To further reduce the
computational time complexity, Sajeeva and Sebastian
[30] applied the semi-intelligent concept of using
Logistic Regression (LR) hybridized with LRU to
improve the performance (computational time speed-
up) but with a precision trade-off. Note that the
concepts of two-component caching were not
discussed in detail, and the use of the selection criteria
instead of other criteria was not justified.

4 Two-Level Intelligent Web Caching

Schemes

Considering the key advantages of TCRP and soft
computing (i.e., fast computation and high precision),
our approach integrates both techniques into a hybrid
model. TCRP is first used for online caching, and the
accuracy is increased using soft computing. The
selection of LFU was based on its superior
performance in our evaluation, and ELM was used to
represent the soft-computing schemes due to its
advantage of providing computational complexity
reductions with increased precision. In this section, we
provide a detailed description of our proposed method,
which is called Two-Level Intelligent Web Caching
Schemes Using Hybrid ELM-LFU (H-ELM-LFU).
Figure 10 presents a general schematic of our approach,
which can be divided into first- and second-level
caching schemes.

4.1 First-Level Cache

In this level, the key engine performs the
replacement using the traditional web caching scheme
(TCRP) for the purpose of (fast) online caching. Here,
the LFU was selected based on its results compared to
FIFO, LRU, and GDS; however, it is not limited to this
method. There are three main components as follows:
the TCRP cache engine, LFU cache replacement, and
Tree Removal.
TCRP cache engine. This component is the key
function that responds to the user request. It has two
main goals. First, if the web request exists in the first-
level cache database (TRCP caching storage), this
module immediately responds with the web object
(Cache Hit). In case there is no such object, this
module continues to make a request for the object to
the second-level cache management (i.e., ELM cache
engine, discussed later) from the larger database. If
found, the web object will be returned to the user; in
addition, it will be stored/updated in the first-level
cache (also defined as Cache Miss).

732 Journal of Internet Technology Volume 19 (2018) No.3

Internet
TCRP Cache

Engine

LFU Cache

Replacement

1st Cache

Storage

Client

ELM Cache

Engine

ELM Cache

Replacement

2nd Cache

Storage

ELM

Classification

(ELM-Train)

Tree

Removal

1st Level Cache 2nd Level Cache

Request

(Miss)

Web Object

Web Object

Web Objects

(Replacement)

Request

List Log

Request

List Log

ELM-Test Module

Request

Web Objects

(Replacement)

Web Object

(Hit)

Web Object

(Hit)Web Object

(Hit)
Request

Cache Trace

Web

Object

Web Objects

(Replacement)

Data preprocesing

Figure 10. System overview of two-level intelligent web caching schemes

Second, if there are no such web objects, then this
module will make a request to the web server (Internet)
for that particular web object. Once it is received, this
module will forward it to the user and simultaneously
replicate the web object to store in the first-level
storage (if it is not full), also defined as Cache Miss.
LFU cache replacement. This module will be
activated only in the case of the cache being full
(needed for replacement). This activation is used to
identify the least frequently accessed web object in
storage to be replaced with a new web object through
the TCRP cache engine. Once replaced, a particular
replacement web object will be forwarded to the
second-level cache management, including the access
pattern (hit/miss), which is the ELM cache replacement
(discussed in detail in Section 4.2).

Note that, again, the selection of LFU is used for a
fast caching replacement and particularly for real-time
communication because of its key advantage of low
complexity, i.e., O(log(n)) [31]. In general, LFU
assumes that, the higher the probability of accessible
web objects, the higher the probability for the object
being cached, thereby reducing the latency of
subsequent requests.

To confirm our selection criteria, we performed an
intensive evaluation of well-known TCRPs, including
FIFO, LRU, LFU, and GDS, and selected the best
(LFU) for the web caching replacement in our first-
level cache. Figure 11 shows the replacement
performance of different algorithms using the BO2
web dataset from IRCache [32] over 15 days from the
fourth quarter of 2015. We measured the HR and BHR
under different cache sizes (8 MB to 1024 MB). The
results clearly indicate the outstanding LFU
performance of greater than 16% and of nearly 50% for
the HR and BHR, respectively.

8 16 32 64 128 256 512 1024

0

10

20

30

40

50
LFU

LRU

GDS

FIFO

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(a) % Hit Rate

8 16 32 64 128 256 512 1024

0

20

40

60

80

100
LFU

LRU

GDS

FIFO

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(b) % Byte Hit Rate

Figure 11. Web caching performance using the BO2
dataset

Tree removal. The purpose of the TCRP tree removal
is similar to that of cache replacement; however, this
module facilitates LFU replacement, particularly for a
related web object. According to previous research on
hierarchical tree structures, each website generally
consists of various web objects (e.g., HTML, PHP,
style sheets, images, audio, and video), all of which
will be stored in the cache to provide fast accessibility.
Thus, a traditional caching scheme will select the
replacement policy if and only if there is a target
replacement; therefore, other related objects are likely
still in storage and not used.

Although the objects will ultimately be chosen for
replacement based on the frequency criteria, it may

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 733

take a longer period of time, and other, more
significant objects will likely be replaced instead.
Consequently, this study also proposes a specific rule
to seek out related web objects. As shown in Figure 12,
assume that the replaced web object www.kku.ac.th is
considered to be the root (target replacement). Once it
is replaced, other related objects, called leafs, will also
be removed; in this case, these objects are all the
objects sub-directories such as /vendor and /images.

GET http://www.kku.ac.th

/vendor/dist/css/bootstrap.css

/vendor/dist/js/jquery_1_11_1.min.js

/images/images_header/header/logo_th.png

/vendor/dist/css/style.css

/images/images_header/header/3c1h.png

/images/images_header/header/lang-en.png

Root

Target Replacement

Leaf

Figure 12. Example of tree removal

4.2 Second-Level Cache

The main purpose of this level is to achieve high
accuracy (i.e., high HR and/or BHR) with the support
of larger storage. Thus, we propose the use of an
intelligent caching algorithm that uses one of the soft
computing techniques (ELM) and its enhancement for
classification. There are four components: the ELM
cache engine, ELM cache replacement, data pre-
processing, and ELM classification.
ELM cache engine. This module is mainly used to
respond to the web object request from the first-level
cache (if missed) by seeking the object in the second-
level storage (ELM caching storage). This module also
returns “miss” if no such object is available; however,
the actual object will be returned if found.
ELM cache replacement. This component functions
together with the latter two modules of the first-level
cache. The web objects that are chosen to be replaced
in the first-level storage will be used as inputs to
replace objects in the second-level storage. If the
storage is not full, the web objects will be directly
stored.

However, if the storage is full, this module will
perform ELM testing to determine if the objects should
be stored based on the ELM training model. If the
result is “cacheable” or “should be cached”, this
module will perform the actual cache replacement
procedure in sequence; otherwise, the particular object
will be ignored.

To improve the model precision, after testing, the
“cacheable” and “uncacheable” statuses will both be
used to update the re-training process, which will be
recomputed based on a specific threshold (the cache
storage size). Here, we used 100%, i.e., all objects in
storage will be replaced.
Data pre-processing. This component is used to
prepare the web object in storage for the next step,
which is to apply the optimized ELM classification

scheme. In general, the web objects will be converted
into a particular format. Here, the characteristics of the
web query, i.e., HTTP request method (R), URL_ID
(U), size (S), and HTTP code (hit or miss), are used for
the transformation into a particular format in the range
between 0 and 1.
ELM classification. Once the data, which are a
representation of web objects, such as the web access
log, are ready from the previous step, this module is
mainly used to construct the replacement decision
criteria (ELM model) to make a final decision about
which of the objects should be cached or replaced.
Because various web objects are periodically updated,
ELM also requires an update of the training to identify
the caching condition. Note that only a log structure
(cache trace) will be used for classification to avoid
cache storage intervention.

4.3 Intelligent Web Caching Schemes

This section describes ELM classification
techniques, particularly in the context of web caching
and its enhancement. These approaches are used to
generate the ELM model for testing new web objects.
Extreme learning machine (ELM). Huang et al. [33]
first proposed the ELM. The ELM applies a single-
hidden-layer feed-forward network (SLFN), and thus,
there is no requirement to adjust the hidden node
weight as in an NN. The key advantage of the ELM is
that it is a fast training algorithm.

Figure 13 presents a schematic of the ELM. Given a
total of N input neurons in the format (xi, ti) such that i
= 1, 2, 3, …, N, the input xi = (xi1, xi2, …, xiN)T is input
into the network considering the target ti = (ti1, ti2, …,
tim)T. The output weight β and the bias (b) are used to
convert the non-linearity and are derived from the
equation below (for training purposes).

1

N

1

j

L

ti
xi

β1

βj

βL

Input Layer Hidden Layer Output Layer

.

.

.

.

.

.

.

Figure 13. ELM (SLFN)

 †
H Tβ = (5)

The output weight β can be obtained by resolving

the least-squares solution as stated in equation (5).
Here, T denotes the target [t1, t2, …, tN]T and H is a
hidden node function, such as {hij} | (i = 1, …, N and j

= 1, …, L), which is derived from hij = g(wj x + b). H†
is a Moore-Penrose matrix, where the hidden node

734 Journal of Internet Technology Volume 19 (2018) No.3

input weights are wj = [wj1, wj2, …, wjN]T with a bias of
bj, and g() is the activation function, i.e., hard limit,
sigmoid, radial basis, triangular basis, or sine.

During the testing stage, the unknown input x will be
used in hij = g(wj x + b), and the defined weight (w)
will be given before applying the activation function.
The reverse equation below is then used to compute the
predicted target as shown in equations (6) to (8).

1

min || ||

N

i i i

i

h tβ

=

⋅ −∑ (6)

 where T Hβ=

1 1 1

1 1 1 1

1 1

(, , , , , , , ,)

() ()

() ()

L L N

L L

N L N

H w w b b x x

g w x b g w x b

N L

g w x b g w x L

⋅ + ⋅ +⎡ ⎤
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎣ ⎦

� � �

�

� �

�

 (7)

1 1

and

T T

T T

L L

T

T

T

β

β

β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

� � (8)

ELM for web caching replacement. To apply the
ELM for web caching replacement, three attributes are
used as the main features (R, U, S), including the status
of the cache T (hit or miss). Algorithm 7 presents the
detailed methodology. First, these X inputs are
transformed to the range of [0, 1] (line 1), and the input
weight (w) and the bias (b) are randomly generated
(lines 2-3). The activation function (H) is subsequently
applied (line 4), and the output weight (β) is derived
accordingly (line 5). For testing, algorithm 8 shows
that, following input transformation, processes similar
to those of training will be performed to determine the
cacheable probability (CA) by solving equation (7).

Algorithm 7: ELM (Classification) in the Training
Phase

Input: X(R, U, S, T)N, TN
Output:

, ,

, ,
K N K K N

w Bβ

1. Normalize input parameters X in the range [0, 1]
2. Generate random input weight

,K N
w in the range

[-1, 1]
3. Generate random bias

,K N
b in the range [0, 1]

4. Calculate Activation Function

, ,

((, ,))
K N K N

H G w X R U S b= × +

5. Calculate the output weight
†

K N
H Tβ = ×

Algorithm 8: ELM (Classification) in the Testing
Phase

Input:
, ,

, , ,
K N K K N

x w bβ

Output: CA
1. Normalize input parameters x in the range [-1, 1]
2. Calculate Activation Function

, ,

_ ((, ,))
K N K N

H Test G w x R U S b= × +

3. Compute Cacheable Probability

(_)T
K

CA H Test β= ×

ELM with similarity feature. Although several
activation functions affect the replacement precision,
our evaluation (See also Section 5) showed that the
ELM with a hard limit outperforms the NN, FL, GA,
and SVM. Thus, the ELM with a hard limit was
selected for further optimization. This research also
proposes an additional feature to improve the
classification precision using the similarity factor or a
factor to differentiate the two objects. The rationale
behind this feature is two-fold.

The first is for in the case that the actual object is
available. Here, the concept of the hashing sum is used
to identify the object similarity even though the actual
URL may be different. We applied “md5sum” [34] to
generate a fixed size string to represent the whole
object. The example is as follows: Input = “$md5sum
nav_logo242.png” and Output = “710544E7F0C828
B42F51207342622D33.”

However, there is a computational time trade-off
relative to the object size because the hash of the entire
object will be computed. Thus, second, to speed-up the
time complexity as well as in the case of the
unavailability of a web object, here, we propose the use
of a similarity factor (SF), a combination of different
factors from the only trace structure; this combination,
called ELM with similarity, is shown in equation (9).

()

()
Max Max

LF
CType

SizeSF
LF CType

+

=

+

 (9)

Where SF denotes the similarity factor, with the
summation of LF over Size and CType; LF is the total
length of a specific file name, which corresponds to its
size (Size); and CType is the content type with its
encoding format (i.e., application = 1, audio = 2, binary
= 3, font = 4, image = 5, text = 6, video = 7, and other
= 8). This summation is also normalized by the
maximum values of these two factors, i.e., LFMax

(255)
and CTypeMax (8).

5 Performance Evaluation

In this section, the performance and practicality of
our proposed techniques are evaluated and compared
with other existing candidates [14, 17-18, 29] for the
integration of the traditional caching policy and

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 735

intelligent systems (NN, FL, GA, and SVM), including
ELM optimization as well as LFU and LRU as a
representation of the TCRP.

5.1 Data Pre-processing

We selected a well-known real-world web cache
dataset, IRCache [32], from the proxy log from the
National Lab of Applied Network Research (NLANR),
including the access trace from five main proxy servers
across the U.S. (i.e., UC, BO2, SD, SV, and NY). Note
that most related evaluations of web caching have also
used these traces [17-18, 20, 26-30]. The
implementation of the algorithm into the actual proxy,
including the proxy placement into the commercial
(operation) network, is a future consideration due to
management and administrative policy constraints.

However, these traces reflect the actual Internet
usage across the U.S. Because the actual trace includes
millions of objects, to compare the technique with
other candidates [20, 26-30], the trace was limited to
15 days from the fourth quarter of 2015. Note that the
size of the cache is overwhelmed by the number of
web objects. Table 2 shows a detailed dataset from
IRCache.

Table 2. Web caching dataset (IRCache)

Proxy

Dataset

Proxy

Server
Location #Records

Duration

(days)

UC uc.us.ircache.net Urbana–Champaign, IL 1,548,547 15

BO2 bo.us.ircache.net Boulder, CO 1,357,461 15

SD sd.us.ircache.net Silicon Valley, CA 1,249,572 15

SV sv.us.ircache.net San Diego, CA 1,189,115 15

NY ny.us.ircache.net New York, NY 1,587,544 15

The trace files acquired from the IRCache record all

requested web information that was used to make a
decision such as web cache replacement. The files
include seven main attributes: the timestamp (with
socket status as closed) in milliseconds (ms), the client
address (IP address of the requester to the proxy
server), the tag and HTTP code (the status of
accessible codes, i.e., hit or miss), the size of the web
object in bytes, the request method (e.g., GET, POST,
or PUT), the URL, and the content type (such as html,
video, or audio).

5.2 Performance Measurement Metric

There are two main metrics for the performance of
the web caching scheme used in this study.
Classification metric. This metric is mainly used to
state the classification precision of the intelligent
system or if the particular web object should be cached.
Here, the metric is the Corrected Classification Rate
(CCR) [9], as given by equation (10) below.

 (%)
TP TN

CCR
TP FP FN TN

+
=

+ + +

 (10)

Where TP (True Positive) is the classification result
whereby positive training data are evaluated as positive,
TN (True Negative) denotes the classification result
whereby negative training data are evaluated as
negative, FP (False Positive) is the classification result
whereby negative training data are evaluated as
positive, and FN (False Negative) denotes the
classification result whereby positive training data are
evaluated as negative.
Two-level web cache metric. Two well-known metrics,
HR and BHR, are commonly used to determine the
overall performance of web systems. The HR is the
ratio of the number of web objects that the proxy
server can deliver directly back to the client, and its
corresponding size is denoted as BHR [7, 8, 13, 26-30].

In addition, we measured the computation time
during the evaluation. To reflect the overall
performance, we performed both unit and system
testing. We measured the computational complexity of
both the classification analysis and the two-level web
caching.

5.3 Simulation Setups and Configurations

There are two metrics used for the evaluation
process, including the computation time measurement.
Thus, there are also two main configurations, which
are stated below.
Classification configuration. Our proposal is based on
ELM classification optimization, which was originally
obtained from Huang et al. [33] using the MATLAB
tool. There are two main scenarios:
Scenario 1. The following four well-known soft
computing techniques that are applied to web cache
replacement policies [7] are used to evaluate the
classification precision: NN [12], FL [16], GA [18],
and SVM (RBF) [29]. RBF was selected due to its
superior performance among the different kernel
functions including time complexity measurements
(training and testing). The parameters related to the
intelligent scheme include configurations that follow
the recommendation from the literature [7, 12, 16, 18,
29].

For example, the NN applies a BPNN with a range
of weights in [-1, 1] [12]. Four main variables (i.e.,
time stamp, size, accumulative frequency, and response
time), including 12 fuzzy rules, were used [16].
Similarly, three of the variables, excluding the
accumulative frequency, were used to compute the
fitness for the GA [18].

For this scenario, the dataset was acquired from SD,
with 1,249,572 transactions over 15 days. The
evaluation applied K-fold cross validation [9], in which
K is set to 4 [20, 23, 27, 30] (i.e., 75% for training and
25% for testing) for four rounds. We limited the
maximum cache size to 1 GB to be consistent with the
setups in scenario 2 and 3.
Scenario 2. We evaluated the practical use of our
proposed technique using the ELM [33] under various

736 Journal of Internet Technology Volume 19 (2018) No.3

activation functions, i.e., sine, sigmoid, hard limit,
triangular basis, and radial basis functions, using CCR
and again with time measurements. The same dataset
used in Scenario 1 was applied to compare the
performance.
Two-level web cache configuration. With the results
from the first two scenarios, this scenario (Scenario 3)
was evaluated to determine the actual caching
efficiency in terms of HR and BHR. We adapted other
comparative hybrid schemes to evaluate the
performance, one of which was proposed by Ali et al.
[29], who integrated LRU with an SVM (here called
SVM-LRU). Similarly, the other scheme was proposed
by Sathiyamoorthi and Ramya [35] but represents the
integration of an SVM and LFU (here called SVM-
LFU).

As discussed in Section 2, LRU and LFU were used
for comparison. The emulation is based on WebTraff,
which is a module for evaluating caching efficiency
with real-world traces. It was installed on a system
running Linux Ubuntu 12.04 LTS and with a 2.66 GHz
Intel(R) Core (TM) Quad Q8400 CPU, 4 GB DDR-
SDRAM, and a 250 GB, 5400 rpm hard disk. Five
main web access datasets, with cache sizes of 2k
ranging from 3 to 10, were evaluated.

5.4 Simulation Results and Discussion

Three main scenarios are discussed here. To
compare the performance of the soft-computing-based
classifications, i.e., NN, FL, GA, and SVM, for the
first scenario, Table 3 shows the CCRs of the different
soft computing approaches; higher scores indicate
better performance. The classification performance of
the NN is outstanding (94.90%) compared with the
approximately 85% performance of the FL and GA;
however, the accuracy of the SVM, 93.44%, is not
significantly different from that of the NN.

Table 3. CCRs of Soft computing approaches

Soft Computing CCR Time (ms)

NN 94.90 4,580

FL 83.86 430

GA 85.38 650

SVM 93.44 1,125

Considering the computation time complexity, as is

generally known, the precision of the NN is the best
but is achieved at a high computation time trade-off,
i.e., 4,580 ms. In contrast, the FL is outstanding in
terms of performance (only 430 ms) but suffers from a
precision trade-off. Similarly, the computation time of
the GA is almost eight times lower than that of the NN.
The SVM requires approximately 1 second, which is
between the times of FL/GA and the NN (but again
with high precision).

Table 4 compares the performance (CCR) of the
ELM classification with various activation functions

(i.e., sine, sigmoid, hard limit, TRIBAS, and RBF) in
Scenario 2. In general, the ELM (all functions) can
achieve a high classification rate (greater than 94%),
although the ELM with the hard limit function is
outstanding (95.15%), and the other four methods are
similar (average of approximately 94.88%).

Table 4. CCRs of ELM (Various activation functions)

ELM (Activation Function) CCR Time (ms)

Sine 94.85 1,211

Sigmoid 94.85 1,280

Hard limit (HARD) 95.15 1,274

Triangular basis (TRIBAS) 94.80 1,211

Radial basis (RBF) 94.77 1,291

The computational times of all of the functions are

similar (between 1,211 ms and 1,291 ms), but that of
the RBF is the worst. The sine and TRIBAS functions
obtained the best performance (1,211 ms) but at lower
CCR compared with the ELM with HARD, which was
then used for our subsequent experiment due to its
superior classification rate and time complexity trade-
off (found not to be significantly different from the
other functions).

Comparison of Table 3 and Table 4 shows that the
ELM (hard limit) achieves the highest recognition rate
(95.15%); thus, it was again selected for further ELM
optimization.

Figure 14 and Figure 15 compare the performance of
the SVM with LRU [29] and LFU [35] for Scenario 3,
including our enhancement (H-ELM-LFU) as well as
the traditional LRU and LFU. In general, the HR trend
of the five datasets is similar: the larger the cache size,
the higher the HR (see Figure 14). This relationship is
reasonable because there is a large opportunity for web
objects to be available in the cache.

Given a particular cache replacement policy, the
performance of H-ELM-LFU is generally outstanding;
it ranges from approximately 3% to 38% for cache
sizes of 8 MB to 1024 MB. The performances of the
other classifications descend in the order of SVM-LRU,
SVM-LFU, LFU, and LRU. The performances of the
last two approaches are similar (due to the use of only
traditional caching).

Although there is an obvious effect from the hybrid
model, H-ELM-LFU still maintains an outstanding HR
(17.96% on average); its average performance
improvements on five datasets over SVM-LRU and
SVM-LFU are 21.3% and 24.6%, respectively. In other
words, the average HRs of these two methods are only
14.81% and 14.41%. In addition, LFU is superior to
LRU; the HRs are approximately 9.23% and 9.04%,
respectively. Compared with H-ELM-LFU, the
percentage improvements are over 94.5% and 98.7%,
respectively.

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 737

8 16 32 64 128 256 512 1024

0

10

20

30

40

50
H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(a) UC dataset

8 16 32 64 128 256 512 1024

0

10

20

30

40

50

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(b) SV dataset

8 16 32 64 128 256 512 1024

0

10

20

30

40

50

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(c) SD dataset

8 16 32 64 128 256 512 1024

0

10

20

30

40

50

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(d) NY dataset

8 16 32 64 128 256 512 1024

0

10

20

30

40

50

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

H
it

 R
a
te

 (
%

)

(e) BO2 dataset

Figure 14. % Hit rate vs. cache size (MB)

8 16 32 64 128 256 512 1024

0

20

40

60

80

100

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(a) UC dataset

8 16 32 64 128 256 512 1024

0

20

40

60

80

100

H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(b) SV dataset

8 16 32 64 128 256 512 1024

0

20

40

60

80

100
H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(c) SD dataset

8 16 32 64 128 256 512 1024

0

20

40

60

80

100
H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(d) NY dataset

8 16 32 64 128 256 512 1024

0

20

40

60

80

100
H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

B
y
te

 H
it

 R
a
te

 (
%

)

(e) BO2 dataset

Figure 15. % Byte hit rate vs. cache size (MB)

738 Journal of Internet Technology Volume 19 (2018) No.3

Figure 15 shows the BHR values that correspond to
the HR values in Figure 14 but with different orders
(here, SVM-LFU is better than SVM-LRU). The trend
closely follows that of the HR; the larger the cache size,
the higher the BHR. The performance of H-ELM-LFU
remains outstanding, namely, up to 79%. LFU and
LRU more strongly affect the BHR than the HR (up to
50% and 45%).

The performances of the two hybrid approaches are
similar (SVM-based approaches) and are also similar
to H-ELM-LFU. However, the performance of H-
ELM-LFU is again outstanding (61% on average) and
in the order of SVM-LFU, SVM-LRU, LFU, and LRU.
The average performance improvements of H-ELM-
LFU over the other four methods are 21.1%, 33.65%,
87.87%, and 94.8%, respectively.

In addition, Figure 16 shows the computation time
performance. Here, we measured over the entire
caching epoch and then performed the average over
five datasets. In general, with larger cache size, the
computation time is reduced due to the additional
space available to perform the replacement. The timing
ranges from approximately 200 to 40 seconds with 8
MB to 1024 MB cache sizes. The computation times
for all techniques (using traditional caching or the
hybrid model) are not significantly different due to the
parallel processing of both caching levels.

8 16 32 64 128 256 512 1024

0

100

200

300
H-ELM-LFU

SVM-LRU

SVM-LFU

LRU

LFU

Cache Size (MB)

T
im

e
 (

S
e
c
)

Figure 16. Web caching performance: computation time

6 Conclusions and Future Work

This study evaluated a two-level web caching
system that was designed to achieve high HR and BHR
with a resource constraint (i.e., caching storage),
including support for real-time caching. The fast
traditional caching policy was used for the front end,
and an intelligent system was applied to create caching
opportunity information for the back end to enhance
the replacement precision.

Several traditional caching policies (i.e., FIFO, LRU,
LFU, and GDS) were also evaluated, and the results
demonstrated the outstanding performance of LFU.
Thus, LFU was selected for the front end. Several soft
computing approaches, including NN, FL, GA, and
SVM, were also examined for the second-level cache.
Our proposed method, which is called ELM
optimization (ELM Similarity with a Hard Limit), and
the seamless integration with the traditional caching

policy (LFU) were studied (Hybrid ELM-LFU or H-
ELM-LFU) and found to provide an HR of nearly 38%
and a BHR of 79%.

Although our study indicates that H-ELM-LFU
performance is a superior web caching replacement
system, additional investigations, assumptions, and
constraints, such as heterogeneous caching access and
large-scale datasets that include large-scale caching,
should be explored. Other hybrid schemes and
optimizations of soft computing should also be
investigated in terms of time complexity trade-offs.
Due to the limitation of proxy placement access by the
Internet Provider, practical implementation of H-ELM-
LFU should also be investigated further. These topics
are all subjects of ongoing research.

Acknowledgement

This research was supported by a grant from the

Faculty of Science, Khon Kaen University and Khon
Kaen University.

References

[1] Internet Society, Internet Society Global Internet Report,

Report 2017, January, 2018.

[2] Cisco, Cisco Visual Networking Index: Forecast and

Methodology 2016-2021, Report 2017, June, 2017.

[3] w3schools.com, Browser Statistics and Trends, https://www.

w3schools.com/BROWSERS/default.asp.

[4] D. Tuncer, V. Sourlas, M. Charalambides, M. Claeys, J.

Famaey, Scalable Cache Management for ISP-Operated

Content Delivery Services, IEEE Journal on Selected Areas

in Communications, Vol. 34, No. 8, pp. 2063-2076, August,

2016.

[5] C. Imbrenda, L. Muscariello, D. Rossi, Analyzing Cacheable

Traffic in ISP Access Networks for Micro-CDN Applications

via Content-Centric Networking, Proceedings of the First

International Conference on Information-Centric Networking,

Paris, France, September, 2014, pp. 57-66.

[6] S. Mittal, J. S. Vetter, A Survey Of Architectural Approaches

for Data Compression in Cache and Main Memory Systems,

IEEE Transactions on Parallel and Distributed Systems, Vol.

27, No. 5, pp. 1524-1536, May, 2016.

[7] W. Ali, S. M. Shamsuddin, A. S. Ismail, A Survey of Web

Caching and Prefetching, International Journal of Advances

in Soft Computing and its Application, Vol. 3, No. 1, pp. 1-27,

March, 2011.

[8] S. Sulaiman, S. M. Shamsuddin, A. Abraham, A Survey of

Web Caching Architectures or Deployment Schemes,

International Journal of Innovative Computing, Vol. 3, No. 1,

pp. 5-14, June, 2013.

[9] H. Jang, E. Topal, A Review of Soft Computing Technology

Applications in Several Mining Problems, Applied Soft

Computing, Vol. 22, pp. 638-651, September, 2014.

[10] G. Zhang, Y. Li, T. Lin, Caching in Information Centric

A Two-Level Intelligent Web Caching Scheme with a Hybrid Extreme Learning Machine and Least Frequently Used 739

Networking: A Survey, Computer Networks, Vol. 57, No. 16,

pp. 3128-3141, November, 2013.

[11] L. A. Belady, R. A. Nelson, G. S. Shedler, An Anomaly in

Space-time Characteristics of Certain Programs Running in a

Paging Machine, Communications of the ACM, Vol. 12, No. 6,

pp. 349-353, June, 1969.

[12] H. Khalid, A New Cache Replacement Scheme Based on

Backpropagation Neural Networks, ACM SIGARCH

Computer Architecture News, Vol. 25, No. 1, pp. 27-33,

March, 1997.

[13] W. Ali, S. Sulaiman, N. Ahmad, Performance Improvement

of Least-Recently-Used Policy in Web Proxy Cache

Replacement Using Supervised Machine Learning,

International Journal of Advances in Soft Computing and its

Applications, Vol. 6, No. 1, pp. 1-38, March, 2014.

[14] H. Khalid, Performance of the KORA-2 Cache Replacement

Scheme, ACM SIGARCH Computer Architecture News, Vol.

25, No. 4, pp. 17-21, September, 1997.

[15] G. G. Vijayan, J. S. Jayasudha, A Survey on Web Pre-

fetching and Web Caching Techniques in a Mobile

Environment, Computer Science & Information Technology,

Vol. 2, No. 1, pp. 119-136, January, 2012.

[16] M. C. Calzarossa, G. Valli, A Fuzzy Algorithm for Web

Caching, Simulation Series Journal, Vol. 35, No. 4, pp. 630-

636, 2003.

[17] M. M. Bartere, P. V. Ingole, A Survey on Applications of

Genetic Algorithms and Fuzzy Logic in Caching,

International Journal of Science and Engineering

Investigations, Vol. 1, No. 2, pp. 5-7, March, 2012.

[18] A. Vakali, Evolutionary Techniques for Web Caching,

Distributed and Parallel Databases, Vol. 11, No. 1, pp. 93-

116, January, 2002.

[19] DomainTools, Domain Count Statistics for TLDs, http://www.

research.domaintools.com/statistics/tld-counts/.

[20] W. Ali, S. M. Shamsuddin, A. S. Ismail, Intelligent Web

Proxy Caching Approaches Based on Machine Learning

Techniques, Decision Support Systems, Vol. 53, No. 3, pp.

565-579, June, 2012.

[21] C. Chang, C. Lin, LIBSVM: A Library for Support Vector

Machines, ACM Transactions on Intelligent Systems and

Technology, Vol. 2, No. 3, pp. 1-27, April, 2011.

[22] M. Dawar, C. Singh, Study on Web Caching Architecture: A

Survey, International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 3, No. 11,

pp. 581-585, November, 2013.

[23] J. Cobb, H. E. Aarag, Web Proxy Cache Replacement

Scheme Based on Back-Propagation Neural Network, Journal

of Systems and Software, Vol. 81, No. 9, pp. 1539-1558,

September, 2008.

[24] A. Abdalla, S. Sulaiman, W. Ali, Intelligent Web Objects

Prediction Approach in Web Proxy Cache Using Supervised

Machine Learning and Feature Selection, International

Journal of Advances in Soft Computing and Its Applications,

Vol. 7, No. 3, pp. 146-164, November, 2015.

[25] S. Sulaiman, S. M. Shamsuddin, F. Forkan, A. Abraham,

Intelligent Web Caching Using Neurocomputing and Particle

Swarm Optimization Algorithm, Proceedings of the Asia

International Conference on Modelling & Simulation

(AICMS), Kuala Lumpur, Malaysia, 2008, pp. 642-647.

[26] P. J. Benadit, F. S. Francis, U. Muruganantham, Improving

the Performance of a Proxy Cache Using Tree Augmented

Naive Bayes Classifier, Procedia Computer Science, Vol. 46,

pp. 184-193, May, 2015.

[27] W. A. Ahmed, S. M. Shamsuddin, Neuro-Fuzzy System in

Partitioned Client-Side Web Cache, Expert Systems with

Applications, Vol. 38, No. 12, pp. 14715-14725, November-

December, 2011.

[28] W. Ali, S. M. Shamsuddin, A. S. Ismail, Intelligent Naïve

Bayes-based Approaches for Web Proxy Caching,

Knowledge-Based Systems, Vol. 31, pp. 162-175, July, 2012.

[29] W. Ali, S. M. Shamsuddin, A. S. Ismail, Intelligent Web

Proxy Caching Approaches Based on Support Vector

Machine, International Conference on Informatics Engineering

and Information Science (ICIEIS 2011), Vol. 252, Kuala

Lumpur, Malaysia, 2011, pp. 559-572.

[30] G. P. Sajeev, M. P. Sebastian, Building Semi-Intelligent Web

Cache Systems with Lightweight Machine Learning

Techniques, Computers & Electrical Engineering, Vol. 39,

No. 4, pp. 1174-1191, May, 2013.

[31] Z. Shuchang, An Efficient Simulation Algorithm for Cache of

Random Replacement Policy, IFIP International Conference

on Network and Parallel Computing (NPC), Zhengzhou,

China, 2010, pp. 144-154.

[32] National Lab of Applied Network Research (NLANR),

Sanitized Access Logs, http://www.ircache.net/.

[33] G. Huang, D. H. Wang, Y. Lan, Extreme Learning Machines:

A Survey, International Journal of Machine Learning and

Cybernetics, Vol. 2, No. 2, pp. 107-122, June, 2011.

[34] Unix.com, Man Page for md5sum, https://www.unix.com/

man-page/linux/1/md5sum.

[35] V. Sathiyamoorthi, P. Ramya, Enhancing Proxy Based Web

Caching System using Clustering Based Pre Fetching with

Machine Learning Technique, International Journal of

Research in Engineering and Technology, Vol. 3, No. 7, pp.

463-469, May, 2014.

Biographies

Phet Imtongkhum is an M.S.
student in the Department of
Computer Science, Khon Kaen
University, Thailand, where he also
received a BS degree (honor) in
2013. He is CEO of Advanced
Internetworking Co. Ltd. His
research interests include computer

networking, multimedia networks, and machine
learning.

740 Journal of Internet Technology Volume 19 (2018) No.3

Chakchai So-In (IEEE/ACM SMs)
is a Professor (Associate) in the
Department of Computer Science at
Khon Kaen University. He received
PhD from WUSTL, USA. He was an
intern at Cisco Systems, WiMAX
Forum, and Bell Lab. He has
published over 80 papers and has

authored 10 books. His research interests include
mobile, sensor, wireless, and computer networks.

Surasak Sanguanpong is an
Associate Professor in the
Department of Computer Engineering
and the Director of the Applied
Network Research Laboratory at
Kasetsart University. He received a
B.Eng. and an M.Eng. in Electrical
Engineering from Kasetsart

University in 1985 and 1987. His researches focus on
network measurement, Internet security and high-speed
networking.

Songyut Phoemphon is a Ph.D.
student in the Department of
Computer Science, Khon Kaen
University, Thailand, where he also
received B.S. and M.S. degrees
(honors) in 2014 and 2016. He was
an intern at NECTEC, Thailand. His
research interests include mobile

computing, wireless sensor networks, and machine
learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

