
Uncertain Composition of Web Services via Non-Deterministic Planning 697

Uncertain Composition of Web Services via Non-Deterministic

Planning

Sen Niu1, Guobing Zou1, Yanglan Gan2, Zhimin Zhou1, Bofeng Zhang1*

1 School of Computer Engineering and Science, Shanghai University, China
2 School of Computer Science and Technology, Donghua University, China

{sniu, gbzou}@shu.edu.cn, ylgan@dhu.edu.cn {zmzhou, bfzhang}@shu.edu.cn

*Corresponding Author: Guobing Zou, E-mail: gbzou@shu.edu.cn

DOI: 10.3966/160792642018051903008

Abstract

Web service composition (WSC) is the task of

combining a set of single Web services together to create

a more complex and cross-organizational composite

service. Recently, many researchers have been done on

WSC. However, most of these approaches did not take

into account the inherent uncertainty of Web services that

is the most important nature characteristic due to service

deployment and invocation within a real and dynamic

Internet environment. Therefore, this paper focuses on

uncertain Web service composition (U-WSC) problem by

three different non-deterministic effects of Web services.

We proposed a comprehensive framework that models a

U-WSC problem to a fully observable non-deterministic

planning (FOND) problem using our automatic planning

transition mechanism. The transformed uncertain

planning problem can be solved by a highly efficient off-

the-shelf non-deterministic planner which finds a plan to

satisfy a composition request. We conducted some

experiments based on a case study in an e-commerce

application via an off-the-shelf non-deterministic planner

called myND. The results of empirical experiments

validate the feasibility of our proposed approach for

dynamic composition of Web services with functional

uncertainty.

Keywords: Web service, Uncertain service composition,

Planning transition, Non-deterministic

planning

1 Introduction

Web services are implemented as self-adaptive, self-

descriptive, modular and well interoperable software

components. They can be published by service

providers and invoked by service requesters anywhere

over the Internet [12]. As the development of cloud

computing [24-26] and service-oriented architecture,

more and more enterprises and organizations prefer to

keep their principal business as Web services and

publish them on the web. However, most of Web

services are designed to only provide simple

functionality. Thus, in most cases single service cannot

meet the requirements of real world applications with

complex business processes. When no single service

has the capability to satisfy a functionality requirement,

WSC techniques can be applied to compose several

correlative services together for the purpose of

fulfilling a complex service requester’s business

demands [20]. As a result, how to effectively and

efficiently compose existing Web services is still an

open research issue.

Automated planning in artificial intelligence has

proved to be one of the most promising techniques for

Web service composition (WSC). Several works in AI

planning have addressed different aspects of WSC [7-

8, 13-14, 18, 22-23], where a WSC problem is

modeled as a classic planning problem. More

specifically, available Web services in a Web service

repository are transformed to construct a classic

planning domain descriptive in Planning Domain

Definition Language (PDDL). Also, a composition

request can be formalized as a classic planning domain

problem in PDDL. In such a case, a WSC planning

problem can be solved by a classic automated planner,

which generates a composition plan to satisfy a service

request. We observe that most of the current

investigations suppose that Web services are stateless

with deterministic effects. In most cases, however,

Web services are actually stateful with multiple

uncertain features in Web environment, including non-

deterministic effects, uncertain QoS, and failures

occurrence. Therefore, with the consideration of

uncertainty in Web service composition, uncertain

Web service composition (U-WSC) has become a big

research challenge in service-oriented real applications.

Investigations on uncertain Web service

composition have been made in recent years. A

replanning strategy, based on classic planning is

proposed in [17]. When unexpected events that cause

failures occur, a classic planner is used to recompose

available services from an initial state to goal

specifications. However, it is difficult to adapt for real-

698 Journal of Internet Technology Volume 19 (2018) No.3

time applications due to its high time computational

complexity and low efficiency, as the number of Web

services increase on the Web.

Taking into account initial states uncertainty, WSC

problem is formulated as a conformant planning

problem [6], which is solved using the FF conformant

planner based forward heuristic algorithm. This kind of

approaches only considered the uncertainties about

initial states, whereas uncertain effects within an action

have not been realized. In addition, U-WSC problem is

modeled as a partially observable non-deterministic

planning problem [2], where Web services descriptive

in WS-BPEL are transformed as state transition

systems (STSs) and the problem is fed into a Model

Based Planner (MBP) to find a solution. The method

realizes the interactions between Web services by

belief states and STS. However, the strong assumption

is that MBP thoroughly reply on predefined Web

services with one kind of uncertain action effect. Thus,

how to automatically and efficiently find a solution to

an uncertain Web service composition problem that are

with multiple action effects has become an important

research issue to be solved.

To address the above challenges, we proposed a

novel approach to solve a U-WSC problem by non-

deterministic planning. We first model a U-WSC

problem as a fully observable non-deterministic

planning (FOND) problem. Then, Web services and

their associated operations are converted into

corresponding actions with multiple uncertain effects

in PPDDL by our domain planning transition

mechanism. Accordingly, an uncertain service

composition request is also converted into an uncertain

planning domain problem in PPDDL by our problem

planning transition strategy. Finally, we solve the

transformed U-WSC planning problem with a highly

efficient state-of-the-art uncertain planner that finds an

uncertain composition solution to our original U-WSC

problem.

We have conducted an empirical experiment on a

case study in an e-commerce application to validate the

effectiveness of our proposed approach to uncertain

Web service composition based on the planner called

myND. The results demonstrated the feasibility of our

approach that can be easily deployed with slight

modification for real world applications.

The remainder of this paper is organized as follows.

In Section 2, we formulate the U-WSC problem and go

through preliminaries. Section 3 describes the

framework of our approach. In Section 4, we present

uncertain composition of Web services using non-

deterministic planning. An empirical experiment on a

case study is conducted in Section 5. Finally, Section 6

reviews related work on Web service composition,

while Section 7 concludes the paper and discusses the

future work.

2 Preliminaries

We first formulate uncertain Web service, U-WSC

problem by a set of definitions, and then present the

descriptive languages WS-BPLE for uncertain Web

service and PPDDL in FOND planning.

2.1 Problem Formulation

Web service is inherently uncertain, since they are

deployed and invoked in dynamic Internet environment.

An uncertain Web service is defined as follows.

Definition 1 (Uncertain Web Service). An uncertain

Web service ws consists of a finite set of operations,

denoted as
1 2 3

{ , , , }ws op op op= � . Among all the

operations in ws, there exists at least one operation,

i
op ws∃ ∈ , which is an uncertain operation.

The uncertainty of a Web service is expressed by a

set of uncertain operations that are with multiple

possible execution effects. The definition of an

uncertain operation is as below.

Definition 2 (Uncertain Operation). Given a Web

service
1 2 3

{ , , , }ws op op op= � , for
i

op ws∀ ∈ it is a 2-

tuple ,I O< > , where 1 2 3{ , , , }I I I I= � is an input

interface parameter set.
1 2 3

{ , , , }O O O O= � is an

uncertain output set with multiple possible execution

states, where 1 2 3{ , , , }j j j jO o o o∀ = � is an execution

output state of the operation by a finite set of output

interface parameters.

Here, we denote .op I and .opO as input parameters

and execution output states of op , respectively. For an

operation op ws∈ , the uncertainty lies in its multiple

execution results. Thus, when 1j = is satisfied, the

operation is certain; otherwise, the operation is

uncertain with 2j� .

Example 1. Let us assume that there are three Web

services w1, w2 and w3 published by service providers

on the Internet. Their operations and associated input

and output parameters are shown in Table 1.

Table 1. Uncertain operations and their associated

input and output parameters

Operation Service Inputs Outputs

op1 w1 {p1, p2, p3} {p4},{p5, p6}

op2 w1 {p4} {p7}

op3 w2 {p5, p6} {p8, p9}

op4 w3 {p8} {p10},{p11}

op5 w3 {p11} {p12}

Form above example, we observe
1 1 2

{ , }w op op= ,

2 3
{ }w op= and

3 4 5
{ , }w op op= . Since the operation

1
op has two execution output sets

4
{ }p and

5 6
{ , }p p ,

it is an uncertain operation. Similarly,
4

op is also an

Uncertain Composition of Web Services via Non-Deterministic Planning 699

uncertain operation, because it has two different

execution output states. Other operations have an

output set that are certain operations. Therefore, Web

services
1

w and
3

w are both uncertain Web services,

while
2

w is a certain Web service.

Definition 3 (Uncertain Service Repository). A Web

service repository with uncertainty is a set of available

services. We denote it as W =
1 2 3

{ , , , }ws ws ws � ,

where (1,2,3,)
i

ws W i∃ ∈ = � , it is an uncertain Web

service.

An uncertain Web service repository contains all the

available services published by service providers on

the Internet. In the example 1, the Web service

repository is represented by
1 2 3

{ , , }W w w w= . It

consists of three available Web services, where
1

w and

3
w are uncertain services and w2 is an uncertain one.

Definition 4 (Operation Applicability). Given an

uncertain operation ,op I O=< > and a service state

with a set of Web service interface parameters,

{ , , , }i j kS p p p= � , op is applicable to S , denoted as

op S� , if .op I S⊆ is satisfiable.

The definition describes the applicability of an

operation op to a service state S , if input parameters

of the operation are subsumed in the state. In the

example 1, if we give a service state
8 9

{ , }S p p= , then

4
op is the applicable to S since the input parameters

of
4

op , i.e.,
8

{ }p , is subsumed to S .

Definition 5 (Uncertain Dependency). Given two

uncertain operations
1

,op I O=< > and
2

,op I O=< > ,

where
1 2 3

{ , , , }O O O O= � is a set of uncertain

execution output states.
1 2

op op� is denoted as the

uncertain dependency between
1

op and
2

op , if the

condition
1 2
. .jop O op I∃ ⊆ is satisfiable, where jO is

one of the execution output state. That is, we have

1
. jop O∃ and

2 1
. . jop I op O� .

From the relationship of uncertain dependency

between two operations, if input parameters of an

operation are subsumed by a random execution output

state of another uncertain operation, then the two

operations are dependent with uncertainty. In the

example 1,
1

op and
3

op as well as
4

op and
5

op are

satisfiable with uncertain dependency.

Definition 6 (Uncertain Request). An uncertain

request, R , is a 2-tuple { , }
in out

R R R= , where

1 2 3{ , , , }
in in in in

R r r r= � is a parameter set provided as

initial condition and 1 2 3{ , , , }
out out out out

R r r r= � is an

uncertain output parameter set provided by a service

requester as the goal specifications.

Note that
out

R always includes all possible

execution output states, e.g. success and failure

execution states. We assume that
1 2 3

{{ , , },R p p p=

8 9
{{ },{ }}}p p is set by a service requester in Example

1, where
1 2 3

{ , , }p p p is designated as initial input

parameters and
8 9

{{ },{ }}p p is a goal output result.

Definition 7 (U-WSC Problem). A U-WSC problem

is defined as a 3-tuple, , ,
in out

W R R< > , where W is an

uncertain service repository, ,
in out

R R are respectively

the initial state and uncertain goal specifications.

In the example 1, we define a U-WSC problem as

, ,
in out

U WSC W R R− =< > , where the details of each

component are as follows. We have
1 2 3

{ , , }W w w w= ,

1 2 3
{ , , }

in
R p p p= , and

10 11
{ , }

out
R p p= . The input

parameters are
1 2 3

{ , , }p p p and the desired goal

execution output state is
10 11

{ , }p p .

From the above definitions, our research goal is to

model a U-WSC problem as an uncertain Web service

composition planning problem, which is a classic fully

observable non-deterministic planning problem. By

doing so, our U-WSC problem can be solved with the

leverage of off-the-shelf uncertain planners that can

find a solution with multiple uncertain execution paths.

2.2 Uncertain Service and Planning Descriptions

As the fundamental description for Web services

with uncertainty, WS-BPEL (Web Services Business

Process Execution Language) [1] is an XML based

description language, which can enable users to

describe business process activities as Web services

and define how they can be connected to accomplish

specific tasks.

WS-BPEL. In WS-BPEL Web service description, a

set of atomic communication operations are combined

within a workflow that defines the process

implemented by the service. There are two kinds of

activities, basic activities and structured activities. The

basic activities are mainly responsible for

implementing certain atomic functions. Table 2

describes the key activities and their semantics.

Table 2. The key basic activities and their semantics in

WS-BPEL

Basic activity Semantics

invoke invoke a service operation

reply send a response

receive receive the request

assign copy data

exit terminate

empty do nothing

In terms of the structured activities, they describe

how a business process is created by composing the

basic activities. It consists of three kinds of structured

activities, including ordinary sequential control

between activities (i.e., sequence, switch and while),

700 Journal of Internet Technology Volume 19 (2018) No.3

concurrency and synchronization (i.e., flow), and

nondeterministic choice based on external events (i.e.,

pick).

PPDDL. PPDDL (Probabilistic Planning Domain

Description Language) was initially used for the

probabilistic track in the 4th International Planning

Competition. The formal definition of PPDDL and its

semantics is given in [3]. It was further extended with

an additional non-deterministic statement, i.e. (one of

1 2
, , ,),

n
e e e� where each effect

k
e ’s is an uncertain

effect. The semantics is that when executing an effect,

it is chosen and applied to the current planning state

[14].

3 The Framework of Our Approach

We developed an approach for uncertain

composition of Web services using the techniques of

non-deterministic planning. Our planning transition

strategies as well as uncertain planning of finding a

composition solution are integrated into the framework

as illustrated in Figure 1.

Figure 1. The framework of the approach for uncertain composition of Web services

The input of our framework is a U-WSC problem

which involves an uncertain service repository and a

composition request, while its output is a solution with

multiple uncertain execution paths. Internally, the

framework goes through three major steps. (1) Convert

an uncertain service repository into a U-WSC planning

domain D . (2) Translate an uncertain composition

problem into a planning problem P in PPDDL. (3)

Apply an efficient non-deterministic planner to solve

the transformed U-WSC problem and find a solution

with uncertainty.

More specifically, we first convert each Web service

in WS-BPEL into a non-deterministic planning

subdomain
i

D in PPDDL. With the integration of N

subdomains
1 2
, , ,

N
D D D� , we transformed an

uncertain service repository W into a U-WSC

uncertain planning domain D . Then, we translate a

composition request with a set of input parameters and

desired output goal specifications into a planning

problem P in PPDDL. Finally, the U-WSC planning

problem is fed into a non-deterministic planner myND

which automatically finds a composition solution to the

given composition request.

4 U-WSC Non-Deterministic Planning

Here, we mainly aim at solving a U-WSC problem

via non-deterministic planning. To achieve this goal,

uncertain planning transition strategies are proposed to

model original problem to a U-WSC planning problem

with possibly multiple execution effects of an action in

terms of functional uncertainty. Before the planning

translation process, a set of formulations around the

definition of U-WSC planning problem are as below.

4.1 U-WSC Planning Problem

To apply the non-deterministic planning technique

to solve a U-WSC problem, the formalization of a U-

WSC planning problem is defined as follows.

Definition 8 (U-WSC State). In a U-WSC problem

setting, a set of finite planning variables and predicates

1 2 3
{ , , , }P p p p= � can be extracted from service

repository W ,
in

R and
out

R . A U-WSC state

comprises of a set of grounded proposition by P .

In a U-WSC problem, predicates are defined to

describe all possible planning states. The predicates

can be exacted from input and output parameters of

Web services. All possible planning state is also called

the U-WSC state.

Definition 9 (U-WSC Action). A U-WSC action is

defined as a triple, ((), (), ())a name a pre a eff a= ,

where ()name a is the action’s name, ()pre a is a set

of propositions as action preconditions, and ()eff a is a

set of positive propositions as action effects.

A U-WSC action corresponds to an operation of an

uncertain service, i.e., its preconditions and effects are

translated from the input and output of an operation.

As a result, a U-WSC action has multiple kinds of

effects, including certain, uncertain, and conditional

Uncertain Composition of Web Services via Non-Deterministic Planning 701

ones.

Definition 10 (U-WSC Planning Problem). A U-

WSC planning problem is a 5-tuple, denoted as

0
(, , , ,)S A s gγ , where S is a finite set of U-WSC states,

A is a finite set of U-WSC actions, : 2
S

S Aγ × → is

the non-deterministic transition function between S

and A ,
0
s and g are the initial state and desired goal

specifications, respectively.

A U-WSC planning problem can be expressively

represented as a classic fully observable non-

deterministic (FOND) planning problem. As illustrated

in Figure 1, it consists of a U-WSC planning domain

D and a planning problem P in PPDDL.

4.2 Mapping Rules in Uncertain Planning

Transition

Given a U-WSC problem , ,
in out

W R R< > , we

extract each uncertain operation from each Web

service ws in W and translate it into an uncertain

action a . The mapping rules from an uncertain

operation in WS-BPEL and a composition request to

its corresponding action and planning problem in

PPDDL are shown in Figure 2.

Figure 2. The mapping rules from an uncertain operation and composition request to an action and planning problem

In terms of the basic activities in WS-BPEL,

including operations of “receive” and “invoke”, they

are converted to corresponding U-WSC actions in

PPDDL. The planning variables in these operations are

translated into action’s preconditions. As for the

structured activities in WS-BPEL, action effects are

divided into three cases, including the transition from

“Sequence” to certain effects, “Switch” to uncertain

effects, and “Pick” to conditional effects of an

uncertain action. We elaborate uncertain planning

domain and problem transition processes in subsequent

section.

4.3 U-WSC Planning Domain Transition

Based on the mapping relationships from an

uncertain operation in a service to an action in Figure 2,

we apply a set of transition rules, Rules =

1 2 3 4 5
{ , , , , }R R R R R , to U-WSC planning domain

transition.

Definition 11 (Transition Rule Set). Given an

uncertain Web service ws in WS-BPEL, the planning

domain transition maps the service ws to a U-WSC

planning subdomain
i

D using the following transition

rule set
1 2 3 4 5

{ , , , , }Rules R R R R R= , where

1
:R If “invoke“ or “receive” occurs, create a new U-

WSC action a ;

2
:R If “sequence” occurs, () ()eff a eff a C← ∪ ,

where C are certain effects in a ;

3
:R If “switch” occurs, () ()eff a eff a U← ∪ , where

U are uncertain effects in a ;

4
:R If “pick” occurs, () ()eff a eff a L← ∪ , where

L are conditional effects in a ;

5
:R If “assign”, “empty” or “terminate” occurs, add

variables V to ()eff a .

702 Journal of Internet Technology Volume 19 (2018) No.3

Given an uncertain service repository W , we

propose a planning domain translation algorithm as

shown in Algorithm 1, which translates Web services

in WS-BPEL to a non-deterministic planning domain

in PPDDL with multiple execution output effects in

actions.

Algorithm 1: U-WSC planning domain transition

Input: an uncertain service repository W={ws1,

ws2, …, wsN};

Output: a U-WSC planning domain D;

1. (, ,)D A T P ←∅ ;

2. T ← {: requirement: typing: non-deterministic};

3. Foreach
k

ws W∈ do

4. Apply transition rule
5

R , extract variables V ;

5. P P V← ∪ ;

6. Invoke Algorithm 2, extract ()
k

A ws ;

7. ()
k

A A A ws← ∪ ;

8. Extract subdomain
k

D ;

9. Endfor

10. Combine
1 2
, , ,

N
D D D� , we get

1

N

i

i

D D

=

=∪ ;

11. Return D ;

The algorithm works as follows. It takes an

uncertain service repository in WS-BPEL as an input

and the output is a U-WSC planning domain D in

PPDDL. We iterate each service
k

ws in WS-BPEL

that is translated into a set of uncertain actions with all

possible non-deterministic effects. By applying

transition rule
5

R , we can extract variables for

predicates P . Then, uncertain actions are extracted

from ws (in Algorithm 2) as a subdomain
k

D . Finally,

we combine these subdomains as a while into a U-

WSC planning domain D .

In Algorithm 2, we extract actions from an uncertain

service
k

ws in WS-BPEL by the transition rules.

When basic activities “receive” or “invoke” occurs, we

apply
1

R to create a new U-WSC action a and set its

precondition extracted from BPEL. When basic

activities “assign”, “empty”, or “terminate” occurs, we

apply
5

R to extract variables of these activities that are

added into the effects of a . Subsequently, when a

structured activity “sequence” occurs, we apply
2

R to

add certain effects C to ()eff a , recursively. If a

structured activity “switch” occurs, we apply
3

R to add

uncertain effects U with “one of” statements to ()eff a ,

recursively. Finally, when a structured activity “pick”

occurs, we add conditional effects L with “when

(condition)” statements to action effects ()eff a .

Algorithm 2: U-WSC actions extraction

Input: an uncertain Web service
k

ws ; domain

transition rules
1 2 3 4 5

{ , , , , }Rules R R R R R= ;

Output: U-WSC actions set ()
k

A ws ;

1. ()
k

A ws ←∅ ;

2. While (
k

ws in WS-BPEL is not NULL) do

3. If (
1

R is satisfiable) then

4. a←∅ ;

5. () .pre a op inputvar← ;

6. EndIf

7. If (
2

R ,
3

R ,
4

R and
5

R is satisfiable) then

8. () ()eff a eff a C← ∪ ;

9. () ()eff a eff a U← ∪ ;

10. () ()eff a eff a L← ∪ ;

11. Add Variables V to ()eff a ;

12. EndIf

13. () () { }
k k

A ws A ws a← ∪ ;

14. EndWhile

15. Return ()
k

A ws ;

Based on the above algorithms, an uncertain Web

service repository W in WS-BPEL gets translated into

a corresponding U-WSC planning domain D in

PPDDL.

4.4 Uncertain Planning Problem Transition

Given an uncertain service composition request

,
in out

R R R=< > , we devise an Algorithm 3 that is used

for generating a non-deterministic planning problem P

in PPDDL.

Algorithm 3: Uncertain planning problem

transition

Input: An uncertain composition request

,
in out

R R R=< > ;

Output: A PPDDL problem P ;

1.
0

(,)P s g ←∅ ;

2. ForEach i

in in
r R∈ do

3.
0 0

{ }i
in

s s r← ∪ ;

4. ForEach j

out outr R∈ do

5 { }j

outg g r← ∪ ;

6. Return P ;

In Algorithm 3, it takes an uncertain composition

request R as an input and outputs a planning problem

P in PPDDL. A PPDDL problem comprises of two

parts, i.e., initial state
0
s and goal specifications g .

We initially set each of them as ∅ . For each parameter

in
in

R or
out

R , we put them it into initial state
0
s or

goal specifications g , respectively.

Uncertain Composition of Web Services via Non-Deterministic Planning 703

4.5 Time Complexity Analysis

Let U-WSC , ,
in out

W R R=< > be a U-WSC problem,

where
1 2

{ , , }
N

W ws ws ws= � stands for an uncertain

Web service repository, including N Web services,
1 2{ , , }i

in in in in
R r r r= � is an input parameters set as initial

state
0
s and 1 2{ , , }i

out out out out
R r r r= � is a set of output

parameters as goal state g . A U-WSC planning

problem consists of a U-WSC planning domain and a

planning problem. The former translates each operation

in op ws∈ as a U-WSC planning domain action a .

The latter models ,
in out

R R< > as planning problem P .

The time complexity of U-WSC planning domain

transition is determined by the mapping from all of the

operations in W to planning actions in A . Its time

complexity can be calculated by ((
domain wws W

T O T
∈

= ∑

(1 | . | | . | 4)))
w

op ws
op I opO T

∈

+ + + + +∑ , where .op I is

the number of input variables, .opO is the number of

variables in operations and
w

T is dominated by the

number of services in uncertain Web service repository

W . We suppose that max {| . | | . |}
op ws

K op I opO
∈

= + is

an upper bound on the number of inputvar and

variables. We use N and M to denote the number of

services in W and the maximum number of operations

involved in each service ws . Thus, the time

complexity of U-WSC planning domain translation can

be recalculated by (domain ws W op ws
T O

∈ ∈

= ∑ ∑

(| . | | . | 5) 2*)op I opO N+ + + ((| . | | .)O N M op I opO= ∗ ∗ +

2) (2).N O N M K N+ ∗ = ∗ ∗ + ∗ In a large Web

service repository, since we have M N� , K N� , the

time complexity of domain transition is ()
domain
T O N= .

The time computational complexity of generating a

planning problem is dominated by the size of initial

and goal state parameters in ,
in out

R R< > . Considering

the worst case, there are not any repeated parameters

existing among Web services. The time complexity is

bounded by
1

(| | | |) ((| |
i

j
problem in out in

j

T O R R O r

=

= + = ∑

| |)) (2).j

outr O i+ = ∗ In a composition request, we have

i N� , where N is the number of Web services in W .

Thus, the time computational complexity of planning

problem translation for uncertain Web service

composition is ()problemT O N= .

From the time complexity computation and analysis,

our proposed approach of U-WSC planning problem

translation are almost linear time algorithms in regard

to the numbers of services in a given Web service

repository. Thus, a U-WSC problem can be efficiently

translated into a U-WSC planning problem in

polynomial time.

4.6 Finding an Uncertain Solution

By applying U-WSC planning domain and problem

translation algorithms, Figure 3 illustrates the

translation process from a U-WSC problem to a U-

WSC planning problem.

Figure 3. Translation from a U-WSC problem to U-

WSC planning problem

In Figure 3, given an uncertain service repository

and a composition request, we translate it in WS-BPEL

into a U-WSC planning problem ,P D< > in PPDDL.

Thus, the planning domain and planning problem in

PPDDL compose the U-WSC planning problem.

Given a U-WSC planning problem ,P D< > in

PPDDL, its solution plan consists of a set of available

paths, each of which can execute from the initial state

to a possible output state with the invocations of U-

WSC actions in D .

Definition 12 (Path Satisfiability). Given an initial

state
in

R and an execution output state
out

r R∈ , if there

exists a sequence of U-WSC actions that is denoted as

1 2
, , ,

m
a a a= < >∏ � in D , which executes from

in
R

to the desired output state r , then we denote

1 2
, , , { , }

m in
a a a R r< >∝� as path satisfiability.

A solution plan for a U-WSC planning problem

involves all possible paths that state from initial state to

multiple execution output states. It is defined as below.

Definition 13 (U-WSC Solution). Given a U-WSC

problem with
1 2

{ , , , }
out k

R r r r= � , an uncertain

composition solution to the problem is a set of action

sequences

1 2
{ , , , }

k
∏ ∏ ∏� .

1 2
{ , , , }

i k
a a a∀∏ = � ,

{ , }
i in i

R r∏ ∝ is path satisfiable.

From the U-WSC solution, we observe that with the

combination of all the action sequences

1 2
, , ,

k
∏ ∏ ∏� ,

a solution plan takes into account those execution paths

from initial state to all possible uncertain output states.

To solve a U-WSC planning problem, we apply a

state-of-the-art uncertain planner myND [9] that uses

AO
∗ and LAO∗ [5] search guided by the canonical

PDB heuristic. The planner can support PPDDL with

“one of” statement and solve a U-WSC planning

problem to find a U-WSC solution with a set of actions

704 Journal of Internet Technology Volume 19 (2018) No.3

sequences, which are path satisfiable.

Note that we mainly focus on how to translate a U-

WSC problem into a U-WSC planning problem,

instead of designing an efficient uncertain planning

algorithm to find a solution. However, we solve the

translated U-WSC planning problem by an existing

uncertain planner myND, because it has better

performance than other uncertain planning based non-

deterministic planners.

5 Empirical Experiment

To validate the feasibility and effectiveness of our

proposed approach, we have conducted empirical

experiments where models and transition strategies are

implemented in Java for the framework of solving a U-

WSC problem via the techniques of non-deterministic

planning. A case study has been done from an e-

commerce shopping application, whose dataset are

collected from ws-Toolset [2]. We first translate a U-

WSC problem to a U-WSC planning problem using

our proposed transition algorithms, then compare the

time consumption during transition phase and solution

phase, respectively. In general, there are four main

workflow patterns, including sequential, switch,

parallel and iterative in service composition. In this

paper, we focus on the sequential and switch patterns.

However, others can be easily transformed into these

two workflow patterns. The empirical experiments are

conducted on a PC with Intel Dual Core 2.8 GHZ

processor and 3G RAM in Windows 7.

5.1 E-commerce Shopping Problem

Our reference example aims to provide a furniture

purchase & delivery composed service by combining

two independent existing services, including a furniture

purchase service Producer, and a delivery service

Shipper. The composed service allows a service role

User to ask for expected products that can be delivered

at a desired location. As a consequence, the composed

service interacts with three available Web services, i.e.,

Producer, Shipper, and User. The three services are

interacted with each other by the composed service as

illustrated in Figure 4.

Figure 4. The interaction relationship among service

roles User, Producer and Shipper

The interaction process is as follows. The Producer

initially accepts a request for a given product. If the

requested product is available, it provides product size.

Then, if the requester acknowledges his/her interest to

buy it, the Producer makes an offer with a cost and

production duration. Also, this offer can be either

accepted or refused by the requester. In both cases, the

Producer terminates its execution with success or

failure, respectively. For the Shipper, it receives a

request for transporting a product of a given size to a

desired location. After its checking, if the delivery is

possible, the Shipper provides an offer with a cost and

delivery time. It can be accepted or refused by the

external service that has invoked the Shipper. As for

the User, it sends his/her requests to get a given

product at a given location, and then it gets either a

refusal or an offer, indicating the price and the time

required for the service. The User may either accept or

refuse the offer from its interactive services.

The composed service is to sell a product at a

destination as requested by a customer. To achieve this

goal, we have to consider possible execution situations

and try to reach a situation where the three interactions

reach a successful state. However, the goal may be not

always achievable because the product is not available

or the location is out of the area of service of the

Shipper. Therefore, the composed service must

consider all the situations with success or failure.

5.2 Shipper Uncertain Planning Transition

With the U-WSC planning domain and problem

transition, we translate the Web services User,

Producer and Shipper in WS-BPEL to a U-WSC

planning domain using the proposed algorithms 1 and

2. Here, we take the Shipper service as an empirical

experiment, which can be converted into a set of

actions around shipping activities. Part of the Shipper

in WS-BPEL and its corresponding non-deterministic

planning domain are illustrated in Figure 5 and Figure

6, respectively.

In Figure 5, from its business process description,

the Shipper consists of a set of operations, including

{ , _ , }request not avail offer , where “request” and

“offer” are uncertain operations and “not_avail”

belongs to a certain operation. When the Shipper

invokes “request”, it may return {noAvail} or offer

{ , }cost delay . Similarly, after the invocations of

“not_avail” and “offer”, they return {FAIL} and

{(doNothing), (FAIL)}, respectively.

Uncertain Composition of Web Services via Non-Deterministic Planning 705

Figure 5. Part of the description of the Shipper in WS-

BPEL

In Figure 6, the U-WSC subdomain has three actions,

including request, offer and not_avail. The action

“request” has uncertain effects with “one of” statement,

while the action “offer” has conditional effects with

“when” condition statement. The action “not_avail”

has a certain effect.

Figure 6. U-WSC planning domain for Shipper in

PPDDL

We can generate a PPDDL problem from an

uncertain composition request with the reference of

domain. Figure 7 illustrates a planning problem in

PPDDL from a composition request.

Figure 7. The planning problem in PPDDL for Web

service shipper

In Figure 7, size and location are as initial states and

a set of states FAIL (failure) or doNothing (success) as

goal states in the domain problem of service shipper.

5.3 Finding An Uncertain Solution

We apply a highly efficient uncertain planner myND

to solve the U-WSC planning problem. Taking the U-

WSC planning problem in PPDDL as input, the

planner finds a solution with multiple possible

execution paths. The result of U-WSC planning

problem for service shipper is illustrated in Figure 8.

Figure 8. The process of shipper actions with uncertainty

From the result, we can easily know the all possible

workflow processes of operations in shipper. There are

three possible paths:

(1) , ,request offer ack< > ;

(2) , ,request offer nack< > ;

(3) ,request notavail< > .

More specifically, when shipper gets a request, it

will be to check the available. If the available is false,

the shipper invokes the operation _not avail and

return fail. Otherwise, the shipper invokes the

operation offer. If the shipper receives a respond of ack,

the result returns success. Otherwise, the result is fail.

The process of shipper actions can be transformed into

an abstract states diagram in Figure 9.

706 Journal of Internet Technology Volume 19 (2018) No.3

Figure 9. The abstract states diagram of shipper

In Figure 9, every state represents a set of state

space in solution. The root node represents the initial

state and the leaf nodes represent the states of fail or

success.

We translate all Web services and user’s request in

E-commerce Shopping Problem into a U-WSC

planning domain and a planning problem. The solution

about the shopping problem is shown as abstract states

diagram in Figure 10.

Figure 10. The solution for the U-WSC planning

problem using myND

From the solution, we observe that all the paths from

initial state to an execution output state reach a success

or failure state. There are four paths in the U-WSC

solution.

(1) <U_request, P_request, P_not_avail, U_not_

avail>;

(2) <U_request, P_request, S_request, S_not_avail,

U_not_avail >;

(3) <U_request, P_request, S_request, U_ack0,

P_info, offer, U_offer, U_nack, P_offer>;

(4) <U_request, P_request, S_request, U_ack0,

P_info, offer, U_offer, U_ack, P_offer, U_offer>.

More specifically, when the user provides the

request including products and location, we invoke the

Producer and check whether it is available. If it is not

available, we get a failure state. Otherwise, we get

information about product size, and then invoke a

shipping request and check whether it is available.

When the shipping can be available, we can offer the

cost and delay to the User. If the User acknowledges

the cost and delay, we invoke the offer operation and

reach the goal state. Otherwise, the resulting reaches

the possible failure states.

5.4 Performance Analysis

From the view of practicability in real-world

applications, the response time is of vital importance to

a U-WSC method, because it determines whether a

feasible composition solution can be rapidly returned

to users within a short period of time. Therefore, we

employ the response time as the evaluation metric to

compare the approach in transition phase and solution

phase, respectively.

First, we compare our transition approach with state

transition system approach [2] in terms of time

consumption during planning transition phase. Our

transition approach translates Web services from WS-

BPEL to PPDDL, while state transition system

approach translates Web services from WS-BPEL to

state transition systems (STS). We chose four different

Web service in WS-BPEL and translate them into

PPDDL and STS 10 times for each one. We compute

the average time in 10 times and the results are shown

in Table 3.

Table 3. The comparison of time consumption on

planning transition between two approaches

Service name

Transition time (ms)

Approach

Shipper Producer Hotel Flight

BPEL2STS 401.8 386 398.4 394.4

BPEL2PPDDL 113.6 103 119.6 101.6

From the results in Table 3, we observe that the

transition time consumption of BPEL2PPDDL is better

than that of BPEL2STS during the process of

generating different uncertain planning domains of

Uncertain Composition of Web Services via Non-Deterministic Planning 707

Web services. The average time of BPEL2STS and

BPEL2PPDDL is 395.15 ms and 109.45 ms,

respectively. As a result, our proposed uncertain

planning transition algorithm perform more efficiently

when it makes transition for uncertain Web services in

WS-BPEL than STS.

Then, we compare the Zero-heuristic with Canonical

PDB heuristic based on AO∗ algorithm from myND

planner during the phase of finding an uncertain

solution.

We solve the U-WSC planning problem about the

case by the AO∗ algorithm based on Zero-heuristic

and Canonical PDB heuristic. The response time

includes preprocess time, search time and total time.

The corresponding time is shown in Figure 11.

1 2 3

0

200

400

Canonical heuristic

T
im

e
 (
m

s
)

numbers of services

 preprocess time

 search time

 total time

1 2 3

0

30

60

90

 preprocess time

 search time

 total time

Zero-heuristic

T
im

e
 (
m

s
)

numbers of services

Figure 11. The response time of finding a solution between

Zero-heuristic and Canonical heuristic search

From the response time of comparing the algorithms

Zero-heuristic and Canonical PDB heuristic search, the

time increases along with the increasing of the number

of the services, because the U-WSC planning problem

is getting more complex.

The experimental results of time comparison

between Zero-heuristic with Canonical PDB heuristic

is illustrated in Figure 12, including preprocessing time,

search time and total time of finding a service

composition solution to the given uncertain

composition request with all possibly uncertain

execution plans.

In Figure 12, the preprocess time of Zero-heuristic

search is more faster than the time of Canonical PDB

heuristic search, because the PDB heuristic search is

based on the state relevance and need more time to

prepare the relationship in states. But the search time

of the Canonical PDB heuristic search is very lower

than the time of Zero-heuristic search. To be more

precise, the search time of using Canonical PDB

heuristic search ranges from 3ms to 31ms; the search

time of using Zero-heuristic search ranges from 5ms to

58ms. The total time of using Canonical PDB heuristic

search is longer because of the preprocess time.

Based on the experimental results and time compare

analysis, it comes to a conclusion that our approach

translating a U-WSC problem to a corresponding U-

WSC planning problem and solving the U-WSC

planning problem using the non-deterministic planner

is effective.

6 Related Work

Automated composition of Web services aims to

integrate a bunch of correlative functionally

independent services and combine them as a whole to

satisfy a complex demand in real world applications.

Recently, many approaches have been applied to tackle

WSC problems, while AI planning techniques play an

important role in different scenarios, including classic

service composition, QoS-aware dynamic composition

of Web services and uncertain composition of Web

services.

1 2 3

0

100

200

300

400

500

preprocess time

T
im

e
 (

m
s
)

numbers of services

 Zero-heuristic

 Canonical PDB-heuristic

1 2 3

0

20

40

60

search time

T
im

e
 (

m
s
)

numbers of services

 Zero-heuristic

 Canonical PDB-heuristic

1 2 3

0

200

400

total time

T
im

e
 (

m
s
)

numbers of services

 Zero-heuristic

 Canonical PDB-heuristic

Figure 12. The time comparison in every phase

708 Journal of Internet Technology Volume 19 (2018) No.3

Using classic planning for Web service composition,

Web service planner (WSPR) [10-11] goes through

two phases including forward search and regression

search to find a feasible composition solution. During

the search process, a heuristic function is used to

choose a service with the biggest contribution to match

a subgoal. However, it cannot guarantee an optimal

composition solution with the minimum number of

services. A service composition algorithm is proposed

by planning graph model in [19]. The process of

finding a composition solution is the construction of a

planning graph. It just selects a subset of services in

order for new planning graph level, which possibly

incurs redundant Web services in a feasible

composition solution. Recently, we proposed an

efficient approach for automatic composition of Web

services using the state-of-art AI planners [21], where a

WSC problem is regarded as a WSC planning problem.

However, the approach cannot handle uncertain

composition in Web services.

For QoS-aware service composition, [4] proposed a

partial selection approach that is able to reduce the size

of search space by dominance relationships and

constraint validations at candidate level. However, the

approach is based on workflow model and cannot

compose the service automatically proposed an

improved genetic algorithm based approach to

optimize the overall QoS of the service composition

[15]. The approach exploits the genetic algorithm to

simulated annealing and uses the heuristics harmony

search function which changes the algorithm

parameters to improve the conventional techniques. In

[23], We also proposed a novel approach that can

automatically convert a QoS-aware composition task to

a planning problem with temporal and numerical

features, and then solve this planning problem using a

self-developed planner. The approach can find a

composite service graph with the optimal overall QoS

value while satisfying multiple global QoS constraints.

The next, we review the state-of-the-art works on

WSC via non-deterministic planning. Initially,

Hoffmann et al. presented a planning-based approach

to formalize a special case WSC problem [6]. It takes

integrity constraints as background theory specified by

ontology to describe domain constraints between

objects and their properties. Based on integrity

constrains, a WSC problem is converted into a

conformant planning problem under uncertainty with

all of the possible initial states. An empirical

experiment has been conducted by Conformant-FF

planner. However, they are lack of the consideration of

uncertain effects of actions. After that, Bertoli et al.

modeled a WSC problem as a partially observable non-

deterministic planning problem [2], where Web

services descriptive in WS-BPEL are transformed as

state transition systems (STSs). The translated planning

problem is fed into a planner called Model Based

Planner (MBP) to find a solution. Although the method

realizes the interactions between Web services by

belief states and STS, it heavily reply on the Web

service repository that decreases the automation of

uncertain composition of Web services when large

scale services are available on the Internet. Recently,

our research developed an efficient approach for

automatic composition of Web service with uncertainty

using contingencies [20-22]. We translate a Web

service composition problem as a WSC planning

problem in PDDL, where some of contingent actions

are taken into account for the uncertainty of stateful

services. However, we only create artificial actions for

uncertain effects.

Although lots of works have been done in Web

service composition, most of them mainly focus on

certain Web service without any stateful execution

efforts and they do not consider the uncertainty of Web

service in WSC. Some efforts on uncertain Web

service composition have been made in recent years

and presented the solution via non-deterministic

planning. However, these works are time-consuming

and strongly reply on predefined Web services.

Based on above investigations, we propose a novel

approach for uncertain composition of Web services

via non-deterministic planning. After the transition

from a U-WSC problem to a U-WSC planning problem

that is solved by highly efficient uncertain planners. It

can be deployed with good scalability in real

applications.

7 Conclusion and Future Work

We proposed a novel approach for solving uncertain

composition of Web services using the techniques of

non-deterministic planning. We give a whole

framework that models a U-WSC problem to a fully

observable non-deterministic planning problem. Then,

we convert Web services in WS-BPEL into actions

with multiple uncertain efforts in PPDDL by our

domain planning transition rules. Also, an uncertain

composition request was converted into a planning

problem in PPDDL by our problem planning transition

strategy. Finally, taking the U-WSC planning problem

as an input, we apply a highly efficiently uncertain

planner myND to find a solution.

A case study in e-commerce real-world application

is conducted to validate the feasibility and efficiency of

our proposed approach. The results has demonstrated

that our method via non-deterministic planning can be

potentially deployed for real applications. As future

work, we plan to extend non-deterministic planning

algorithms in myND planner and make them more

robust especially for dealing with cycle occurrence in a

composition solution.

Uncertain Composition of Web Services via Non-Deterministic Planning 709

Acknowledgements

This work was partially supported by National

Natural Science Foundation of China (61303096,

61300100), Shanghai Natural Science Foundation

(13ZR1454600, 13ZR1451000, 18ZR1414400), a

Specialized Research Fund for the Doctoral Program of

Higher Education (20133108120029), platform fund of

PAPD and CICAEET, Chen Guang project supported

by Shanghai Municipal Education Commission, the

Fundamental Research Funds for the Central

Universities (16D111208), and an Innovation Program

of Shanghai Municipal Education Commission

(14YZ017).

We thank Robert Mattmuller, Manuela Ortlieb and

Malte Helmert for their open sources of AI planner

myND planner. We also appreciate all of the

anonymous reviewers for their insightful suggestions

and useful comments that will significantly improve

the quality of our manuscript.

Sen Niu and Guobing Zou contributed equally to

this study and share first authorship.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.

Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,

S. Weerawarana, Business Process Execution Language for

Web Services, Version 1.1. Specification, May, 2003.

[2] P. Bertoli, M. Pistore, P. Traverso, Automated Composition

of Web Services via Planning in Asynchronous Domains,

Artificial Intelligence, Vol. 174, No. 3-4, pp. 316-361, March,

2010.

[3] D. Bryce, O. Buffet, 6th International Planning Competition:

Uncertainty Part, Proceedings of the 6th International

Planning Competition, Sydney, Australia, 2008, pp. 1-6.

[4] Y. Chen, J. Huang, C. Lin, Partial Selection: An Efficient

Approach for QoS-Aware Web Service Composition,

Proceedings on IEEE International Conference on Web

Services (ICWS), Anchorage, AK, 2014, pp. 1-8.

[5] E. A. Hansen, S. Zilberstein, LAO*: A Heuristic Search

Algorithm that Finds Solutions with Loops, Artificial

Intelligence, Vol. 129, No. 1-2, pp. 35-62, June, 2001.

[6] J. Hoffmann, P. Bertoli, M. Helmert, M. Pistore, Message-

based Web Service Composition, Integrity Constraints, and

Planning under Uncertainty: A new Connection, Journal of

Artificial Intelligence Research (JAIR), Vol. 35, No. 1, pp.

49-117, May, 2009.

[7] M. Klusch, A. Gerber, Fast Composition Planning of OWL-S

Services and Application, Proceedings of the European

Conference on Web Services (ECOWS), Zurich, Switzerland,

2006, pp. 181-190.

[8] M. Klusch, A. Gerber, M. Schmidt, Semantic Web Service

Composition Planning with OWLS-XPlan, Proceedings of

the AAAI Fall Symposium on Agents and the Semantic Web

(AAAI), Arlington, Virginia, 2005, pp. 1-8.

[9] R. Mattmüller, M. Ortlieb, M. Helmert, P. Bercher, Pattern

Database Heuristics for Fully Observable Nondeterministic

Planning, Proceedings of the twentieth International

Conference on Automated Planning and Scheduling (ICAPS),

Toronto, Canada, 2010, pp. 1-8.

[10] S.-C. Oh, D. Lee, S. R. T. Kumara, Web Service Planner

(WSPR): An Effective and Scalable Web Service

Composition Algorithm, International Journal of Web

Services Research, Vol. 4, No. 1, pp. 1-22, January-March,

2007.

[11] S.-C. Oh, D. Lee, S. R. T. Kumara, Effective Web Service

Composition in Diverse and Large-scale Service Networks,

IEEE Transactions on Service Computing (TSC), Vol. 1, No.

1, pp. 15-32, January-March, 2008.

[12] J. Rao, X. Su. A Survey of Automated Web Service

Composition Methods, in: J. Cardoso, A. Sheth (Eds.),

Semantic Web Services and Web Process Composition,

Lecture Notes in Computer Science (LNCS), Springer, 2005,

pp. 43-54.

[13] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, HTN Planning

for Web Service Composition Using SHOP2, Journal of Web

Semantics: Science, Services and Agents on the World Wide

Web, Vol. 1, No. 4, pp. 377-396, October, 2004.

[14] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, Automating

DAML-S Web Services Composition Using SHOP2,

Proceedings of the 2nd International Semantic Web

Conference (ISWC), Sanibel Island, FL, 2003, pp. 195-210.

[15] A. E. Yilmaz, P. Karagoz, Improved Genetic Algorithm based

Approach for QoS Aware Web Service Composition, IEEE

International Conference on Web Services (ICWS), Anchorage,

AK, 2014, pp. 463-470.

[16] H. L. S. Younes, M. L. Littman, PPDDL1. 0: An Extension to

PDDL for Expressing Planning Domains with Probabilistic

Effects, CMU-CS-04-167, October, 2004.

[17] E. Zahoor, O. Perrin, C. Godart, Disc: A Declarative

Framework for Self-healing Web Services Composition,

Proceedings of the 10th IEEE International Conference on

Web Services (ICWS), Miami, FL, 2010, pp. 25-33.

[18] W. Li, Z. Ye, X. Zhao, J. Jiang, Q. Jin, Probability Modeling

and Functional Validation of Dynamic Service Composition

for Location Based Services with Uncertain Factors, Journal

of Internet Technology, Vol. 15, No. 4, pp. 653-643, July,

2014.

[19] X. Zheng, Y. Yan, An Efficient Syntactic Web Service

Composition Algorithm based on the Planning Graph Model,

Proceedings of IEEE International Conference on Web

Services (ICWS), Beijing, China, 2008, pp. 691-699.

[20] G. Zou, Y. Chen, Y. Xu, R. Huang, Y. Xiang, Towards

Automated Choreographing of Web Services Using Planning,

Proceedings of the 26th AAAI Conference on Artificial

Intelligence, Toronto, Canada, 2012, pp. 178-184.

[21] G. Zou, Y. Gan, Y. Chen, B. Zhang, Dynamic Composition

of Web Services Using Efficient Planners in Large-scale

Service Repository, Knowledge-Based Systems, Vol. 62, pp.

98-112, May, 2014.

[22] G. Zou, Y. Gan, Y. Chen, B. Zhang, R. Huang, Y. Xu, Y.

710 Journal of Internet Technology Volume 19 (2018) No.3

Xiang, Towards Automated Choreography of Web Services

Using Planning in Large Scale Service Repositories, Applied

Intelligence, Vol. 41, No. 2, pp. 383-404, September, 2014.

[23] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, Y. Xiang, QoS-

aware Dynamic Composition of Web Services Using

Numerical Temporal Planning, IEEE Transactions on

Services Computing (TSC), Vol. 7, No. 1, pp. 18-31, January-

March, 2014.

[24] Y. Ren, J. Shen, J. Wang, J. Han, S. Lee, Mutual Verifiable

Provable Data Auditing in Public Cloud Storage, Journal of

Internet Technology, Vol. 16, No. 2, pp. 317-323, March,

2015.

[25] Z. Xia, X. Wang, X. Sun, Q. Wang, A Secure and Dynamic

Multi-keyword Ranked Search Scheme over Encrypted Cloud

Data, IEEE Transactions on Parallel and Distributed Systems,

Vol. 27, No. 2, pp. 340-352, February, 2016.

[26] Z. Fu, X. Sun, Q. Liu, L. Zhou, J. Shu, Achieving Efficient

Cloud Search Services: Multi-keyword Ranked Search over

Encrypted Cloud Data Supporting Parallel Computing, IEICE

Transactions on Communications, Vol. E98-B, No. 1, pp.

190-200, January, 2015.

Biographies

Sen Niu is a member of IEEE (93919367).

He is currently a Ph.D. candidate in the

School of Computer Engineering and

Science, Shanghai University, China. His

research interests include Web service

composition, service computing, artificial

intelligence and automated planning. He

has published a paper on SCC 2016.

Guobing Zou is an associate professor in

School of Computer Engineering and

Science at Shanghai University, China.

His research interests include service

computing and data mining. He has

published around 45 papers on

international journals and conferences,

including IEEE TSC, Knowledge-Based

Systems, Applied Intelligence, Soft

Computing, AAAI, and SCC.

Yanglan Gan is an associate professor in

School of Computer Science and

Technology at Donghua University,

China. Her research interests include data

mining and bioinformatics. She has

published around 20 papers on

international journals and conferences,

including Bioinformatics, BMC

Bioinformatics, IEEE/ACM Transactions

on Computational Biology and Bioinformatics, and

Neurocomputing.

Zhimin Zhou received his undergraduate

degree from School of Internet of Things

Engineering, Jiangnan University, China.

He is currently a master student in School

of Computer Engineering and Science,

Shanghai University, China. His research

interests include service computing,

uncertainty of service QoS recommendation.

Bofeng Zhang is a full professor in

School of Computer Engineering and

Science at Shanghai University, China.

His research interests include social

computing and artificial intelligence. He

has published around 120 papers on

international journals and conferences. He

served as program chair or PC for

varieties of international conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

