
Fuzzy Decision Load-balancing Algorithm for Cloud-based Terminal Services 689

Fuzzy Decision Load-balancing Algorithm for Cloud-based

Terminal Services

Hsin-Hung Chen1, Li-Shing Huang1, Jian-Bo Chen2, Tsang-Long Pao1*

1 Tatung University, Department of Computer Science and Engineering, Taiwan
2 Ming Chuan University, Department of Information and Telecommunications Engineering, Taiwan

{hsinhung.chen, joeintw}@gmail.com, jbchen@mail.mcu.edu.tw, tlpao@ttu.edu.tw

*Corresponding Author: Hsin-Hung Chen; E-mail: hsinhung.chen@gmail.com

DOI: 10.3966/160792642018051903007

Abstract

In this paper, we propose a desktop-as-a-service

system that can be used on a campus to enable full

utilization of powerful hardware and software resources.

Our proposed system comprises Microsoft’s terminal

services and a dispatcher. The dispatcher provides a

single portal and coordinates with different terminal

services as part of the overall desktop-as-a-service system.

When a client issues a request, the dispatcher uses a

fuzzy decision algorithm to balance the load between

terminal services. The fuzzy decision algorithm

comprises three steps, namely, fuzzification, rule

evaluation, and defuzzification. Based on these steps, the

final crisp values can be calculated. As such, the terminal

service with the highest crisp value is the most

appropriate for serving the given client request. Our

experimental results show that our fuzzy decision

algorithm successfully achieves the highest possible

performance.

Keywords: Fuzzy decision, Load balance, Cloud

Terminal services

1 Introduction

The concept of a cloud system emphasizes that

anyone, anywhere, can use any tools to connect to the

Internet, obtaining the same services and achieving the

same results. Based on this concept, we build a cloud

system that can provide users with legally licensed

software without installing it on their own computer.

To accomplish this, we built a cloud system based on

Microsoft’s terminal service [1-2]. In our system, we

install legally licensed software in the terminal server.

Next, users can use the client software of our terminal

service to connect to the cloud-based terminal service

system and use legally licensed software [3].

Given that resources of one terminal server (i.e.,

CPU, memory, network, etc.) are shared, if multiple

users connect to the same terminal server, they

compete for these resources [4]. Moreover, a single

terminal server has a limited number of connections. If

the given resources are exhausted, a new user cannot

be served by the given terminal server. To overcome

this problem, we must build terminal servers to provide

services to more and more users; however, when the

cloud system comprises several terminal servers,

effectively dispatching user requests to the most

appropriate terminal server immediately becomes a

crucial issue [5].

The first solution for handling multiple terminal

servers is to create multiple individual portals that the

user can choose from regardless of the current load of

each terminal server. This method is simple, but it does

not provide any measure of load balancing. The second

solution here is to use a dispatcher as the portal [6].

Requests from users are connected to this single

dispatcher. The dispatcher then uses a load-balancing

algorithm to select the most appropriate terminal server,

providing this information to the user such that the user

can connect to the terminal server with least load.

Several load-balancing algorithms can be adopted in

our desktop-as-a-service system [7-8]. The simplest

algorithms are random and round-robin algorithms.

The random algorithm chooses the most appropriate

target simply by random, which does not consider any

load information regarding the terminal servers. The

round-robin algorithm chooses each terminal server in

turn, which also does not consider load information

regarding the terminal servers.

The least connection algorithm chooses the most

appropriate terminal server according to the current

number of established connections. If one terminal

server has fewer users than all others, this terminal

server will be the most appropriate one to serve the

user. This algorithm can balance load in some

situations, but the least connection algorithm still does

not consider other factors of the terminal servers. If

one user connects to a terminal server and runs a CPU-

bound multimedia application, the CPU load and

memory usage will be substantially higher than others,

but the connection will still count as one connection.

To avoid this problem, we propose incorporating

additional features in making the dispatcher decision

690 Journal of Internet Technology Volume 19 (2018) No.3

[9]. The features we choose here are CPU idle

percentage, available memory, available bandwidth,

and available number of connections [10]. Based on

these four features, we use fuzzy decision to calculate

the final crisp value [11-13]. Our fuzzy decision

algorithm consists of three steps, namely fuzzification,

rule evaluation, and defuzzification. We use the four

features noted above as input parameters, then we

normalize these four features. We define four

membership functions for each parameter by which

membership function values can be obtained. We then

pass these membership function values into the rule

base for rule evaluation. Results of rule evaluation

consist of four decision values. Finally, we use these

four decision values to calculate the final crisp values.

The terminal server with the highest crisp value is then

deemed the most appropriate one to serve that user at

that given time.

In addition to this introduction, our paper is

organized as follows. In Section 2, we introduce our

desktop-as-a-service system. In Section 3, we describe

traditional load-balancing algorithms. In Section 4, we

introduce the features selected in this paper, then in

Section 5, we describe our proposed fuzzy decision

algorithm. In Section 6, we describe our experimental

environments and results. Finally, in Section 7, we

provide conclusions and directions for future work.

2 Desktop-as-a-service System

There are many kinds of cloud services available.

One such cloud service provides users with software,

i.e., users do not need to install software and instead

connect to a cloud service system and execute any pre-

installed software on the cloud. Such software includes

the Microsoft Office series, the Virtual Studio series,

Adobe Creative Suite, and so on. Some of these

software packages are limited in terms of the number

of licensed users, thus we cannot provide everyone a

copy of the software. Instead, we install the software in

a cloud system, and users who wish to use the software

can connect to this cloud system.

To implement this kind of cloud system, we adopt

Microsoft’s terminal service, which provides users a

means of establishing a connection to the terminal

service via the Remote Desktop Protocol (RDP) [2].

When a user connects to the terminal service, all

programs the user executes are on the terminal service

site. The user site merely shows the desktop screen.

The CPU and memory are provided by the terminal

service. In RDP, even the user machine is poor

specification, the user also can execute high-resource

applications, such as multimedia applications. The

architecture of this terminal service is shown in Figure

1.

Figure 1. Terminal service architecture

3 Traditional Load-Balancing Algorithms

It is difficult to use one terminal service to support

many users. We therefore propose building multiple

terminal services that coordinate with one another, thus

forming a cluster. In this cluster, we also require a

load-balancing algorithm that balances load between

each of the terminal services. Figure 2 shows the

general architecture of our load-balancing system.

Figure 2. Dispatcher-based load-balancing architecture

Traditional load-balancing algorithms include the

random, round-robin, and least connection algorithms.

In the random algorithm, the dispatcher randomly

chooses a terminal service and transmits its domain

name or IP address to the requesting user. The user

then establishes a connection to the given terminal

service. In the round-robin algorithm, the dispatcher

chooses each terminal service in turn, i.e., the first user

is served by the first terminal service, the second user

is served by the second terminal service, and so on.

Both the random and round-robin algorithms do not

consider any load information of the terminal services,

thus the entire system cannot evenly share the load.

Nonetheless, these two algorithms are easy to

implement.

The third traditional load-balancing algorithm we

introduce here is the least connection algorithm. In this

algorithm, the dispatcher must keep track of the

number of connections at each of the terminal services.

When a new user issues a request, the dispatcher

chooses the terminal service with the lowest number of

Fuzzy Decision Load-balancing Algorithm for Cloud-based Terminal Services 691

connections. Although this algorithm considers the

number of connections, this algorithm does not

consider other important factors that influence the

overall performance of the system. For example, if one

user connects to a terminal service and executes a

three-dimensional multimedia application, the

allocated resources, including CPU and memory, will

be exhausted by this single user, even though the

number of connections to this terminal service may be

the lowest.

In our proposed fuzzy decision load-balancing

algorithm, we first identify the features. Next, based on

these features, we execute the three steps of the fuzzy

decision algorithm, namely fuzzification, rule

evaluation, and defuzzification. Finally, the resulting

crisp values are used to decide which terminal service

is most appropriate for the given user request.

4 Feature Selection

Some studies have described how CPU load and the

number of user connections impact overall system

performance [14]. Further, some studies used CPU

load, memory size, and I/O throughput characteristics

to measure server capacity [15-16]; cloud computing

also requires the inclusion of network utilization and

the number of current connections [17-18]. Therefore,

we selected four factors of CPU idle percentage,

memory available, bandwidth usage and the number of

current connections as features in our fuzzy decision

algorithm. Using Microsoft’s terminal service, we

implemented the four functions shown in Figure 3 to

Figure 6 to calculate the four feature values.

Figure 3. Function to retrieve CPU idle percentage

Figure 4. Function to retrieve available memory

Figure 5. Function to retrieve bandwidth usage

Figure 6. Function to retrieve the number of

connections

5 Fuzzy Decision Load-Balancing Algorithm

In this section, we describe our fuzzy decision load-

balancing algorithm. After we select the features, the

decision-making is determined via fuzzy logic. Here,

fuzzy logic consists of three steps, i.e., fuzzification,

rule evaluation, and defuzzification. The processes that

comprise our fuzzy decision algorithm are shown in

Figure 7.

Figure 7. The processes comprising our fuzzy decision

load-balancing algorithm

As noted above, we selected four features as specific

input parameters. After the fuzzification step, we

obtain eight membership function values based on

corresponding membership functions. The number of

combinations of these eight values is 16, and the four

fuzzy decision values are obtained based on the fuzzy

rule base. After the defuzzification step, the final crisp

values are obtained. The fuzzy logic mechanism is

shown in Figure 8.

692 Journal of Internet Technology Volume 19 (2018) No.3

Figure 8. Steps of the fuzzy logic process

5.1 Fuzzification

Fuzzification is the process of converting input

parameters into relevant fuzzy membership values

according to corresponding membership functions. For

each feature, we define two membership functions.

These two membership functions are the high and low

membership functions. For each feature, we therefore

obtain two membership values.

The four features selected are CPU idle percentage

(CPU), available memory (MEM), available bandwidth

(BWD) and available connection number (CON). Two

membership functions are defined for each feature.

They are HCPU and LCPU for the feature CPU,

HMEM and LMEM for the feature MEM, HBWD and

LBWD for the BWD and HCON and LCON for the

feature CON. These membership functions are defined

as per equations (1) and (2) and are shown in figures

Figure 9 to Figure 12.

 () ,f x x= 0 1for x≤ ≤ (1)

 () 1 ,f x x= − 0 1for x≤ ≤ (2)

Figure 9. Membership functions of HCPU and LCPU

Figure 10. Membership functions of HMEM and

LMEM

Figure 11. Membership functions of HBWD and

LBWD

Figure 12. Membership functions of HCON and

LCON

5.2 Rule Evaluation

The main purpose behind rule evaluation is to apply

membership function values to the rule base to obtain

resulting rule evaluation values. Table 1 shows the rule

base in which influence rules are illustrated. In the

table, Y, PY, PN, and N indicate Yes, Probably Yes,

Probably No, and No, respectively, all four of these

corresponding to membership function values of the

four features. Rule evaluation values can be assigned

minimum, maximum, or average values for the

membership functions of the rules.

Fuzzy Decision Load-balancing Algorithm for Cloud-based Terminal Services 693

Table 1. Fuzzy rule base

CPU MEM BWD CON Rule Evaluation

HCPU HMEM HBWD HCON Y

HCPU HMEM HBWD LCON Y

HCPU HMEM LBWD HCON Y

HCPU HMEM LBWD LCON PY

HCPU LMEM HBWD HCON Y

HCPU LMEM HBWD LCON PY

HCPU LMEM LBWD HCON PY

HCPU LMEM LBWD LCON PN

LCPU HMEM HBWD HCON PY

LCPU HMEM HBWD LCON PN

LCPU HMEM LBWD HCON PN

LCPU HMEM LBWD LCON PN

LCPU LMEM HBWD HCON PN

LCPU LMEM HBWD LCON N

LCPU LMEM LBWD HCON N

LCPU LMEM LBWD LCON N

Since each factor has two membership functions, we

have 16 possible combinations. Each rule evaluation

value in Table 1 has a decision from among Y, PY, PN,

and N. The fuzzy values are used to evaluate rules for

obtaining Fuzzy Decision Values (FDVs) by assigning

the average value of the degree of membership of the

rules. In this way, the decision and the corresponding

FDV can be precisely determined.

5.3 Defuzzification

In the defuzzification step, we assign a set of

weighted values to the four decision values (i.e., Y, PY,

PN, and N). Each value represents a different set of

weights. Therefore, the Crisp Value (CV) can be

determined based on the weighted values and the

degrees of the fuzzy decision values. The CV is

calculated as

() ()

()

i

i

FD i w i
CV

w i

∑ ×
=

∑
 (3)

where FD(i) is the fuzzy decision value of FD(Y),

FD(PY), FD(PN), and FD(N) and w(i) is the weighted

values of the four fuzzy decision values. Each terminal

server calculates its own CV. The load-balancing

algorithm then uses the CVs to determine which

terminal server is the most appropriate one to serve

client requests. More specifically, the terminal server

with the highest CV is the selected one such that the

entire desktop-as-a-service system can achieve the

highest level of efficiency.

6 Experimental Environment and Results

In this paper, we proposed a fuzzy decision-based

load-balancing algorithm for our desktop-as-a-service

system. We present our experimental environment and

results in this section. Performance comparisons are

also described.

6.1 Experimental Environment

The load-balanced desktop-as-a-service system

consists of three key components, namely clients,

terminal servers, and a dispatcher. In our experimental

environment, we implemented eight terminal servers

and one dispatcher. These eight terminal servers have

the same hardware specifications, which are

summarized in Table 2; specifications for the

dispatcher are summarized in Table 3.

Table 2. Specifications of the terminal servers

 Number Specification

CPU 8 Intel Xeon E5530 2.4GHz

Memory 48GB DDR3 1333MHz

Network Adapter 1 Broadcom BCM5709S

NetXtreme II Gigabit Ethernet

Operating System 1 Windows Server 2008 R2

Terminal Service 200 Terminal Service Licenses

Table 3. Specification of the dispatcher

 Number Specification

CPU 2 Intel Xeon CPU 3.06GHz

Memory 2GB DDR2

Network Adapter 1 Broadcom 5703 10/100/1000

Operating System 1 FreeBSD 8.0

Software 1

Apache/2.2.14

PHP/5.2.12

MySQL/5.0.90

The processes involved in our load-balanced

desktop-as-a-service system are described below and

illustrated in Figure 13. First, the client uses a Web

browser to connect to our desktop-as-a-service system,

i.e., to the dispatcher. After the client account and

password are authenticated, the dispatcher issues

requests to the terminal services to obtain current load

information. When the dispatcher collects all four

features from each of the terminal services, the fuzzy

decision algorithm is used to calculate crisp values for

each terminal services. The terminal service with the

highest crisp value is then selected. Next, the

dispatcher dynamically generates and sends an RDP

file to the client; the RDP file contains the IP address

or domain name of the selected terminal service. The

client then uses this RDP file to connect.

Figure 13. The process of connecting to our desktop-

as-a-service system

694 Journal of Internet Technology Volume 19 (2018) No.3

6.2 Experimental Results

For the dispatcher, we used the Apache webserver

and PHP to implement user authentication, collecting

load information, fuzzy decision-making, and RDP file

generation. The actual implementation for how to

generate the RDP file using PHP is shown in Figure 14;

how the client can access the RDP file is shown in

Figure 15.

Figure 14. The PHP code to generate the RDP file

Figure 15. How the client is able to access the

dynamically generated RDP file

6.3 Performance Evaluation

In this section, we evaluate the performance of

different load-balancing algorithms. For this evaluation,

we implemented the following load-balancing

algorithms: Random Choice (RC); Round-Robin (RR);

Least Connection (LC); and our proposed Fuzzy

Decision (FD) algorithm. In Figure 16, when the

current number of connections in the experimental

desktop-as-a-service system increased from zero to

1400 connections, the average response time for a new

client also increased; however, when we used different

load-balancing algorithms, our fuzzy decision

algorithm had shorter response times than all other

algorithms, indicating that if the load-balancing

algorithm can evenly dispatch client requests to

terminal services according to current load information,

the entire system can indeed achieve higher

performance.

Figure 16. Performance evaluations for the four

comparative algorithms

7 Conclusions

In this paper, we proposed a desktop-as-a-service

system that can provide a platform for students. This

system is consisting of several terminal services, and to

efficiently share the load across all terminal services,

we developed a load-balancing mechanism. There are

several existing load-balancing algorithms, but none of

them evenly dispatches client requests to the most

appropriate terminal service. We showed that our

proposed fuzzy decision algorithm is able to solve this

issue.

Our fuzzy decision algorithm uses fuzzification, rule

evaluation, and defuzzification as the three key steps to

obtaining a final crisp value for each terminal service.

The terminal service with the highest crisp value is

then deemed the most appropriate one to serve the

current client’s request. Our experimental results show

that our proposed fuzzy decision algorithm is able to

achieve the lowest response times in comparison with

other load-balancing algorithms.

References

[1] Microsoft, Microsoft Support, Remote Desktop Protocol

settings in Windows Server 2003 and in Windows XP,

http://support.microsoft.com/kb/885187.

[2] Microsoft, Windows Server, Remote Desktop Services Forum,

http://social.technet.microsoft.com/Forums/en-US/winserver

TS/threads.

[3] V. Sreenivas, M. Prathap, M. Kemal, Load Balancing

Techniques: Major Challenge in Cloud Computing- A

Systematic Review, Proc. of International Conference on

Electronics and Communication Systems, Coimbatore, India,

2014, pp. 1-6.

[4] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, L.

Zhang, A Hierarchical Approach for the Resource

Management of Very Large Cloud Platforms, IEEE

Transactions on Dependable and Secure Computing, Vol. 10,

No. 5, pp. 253-272, September-October, 2013.

Fuzzy Decision Load-balancing Algorithm for Cloud-based Terminal Services 695

[5] J. Luo, L. Rao, X. Liu, Temporal Load Balancing with

Service Delay Guarantees for Data Center Energy Cost

Optimization, IEEE Transactions on Parallel and Distributed

Systems, Vol. 25, No. 3, pp. 775-784, March, 2014.

[6] C. Assi, S. Ayoubi, S. Sebbah, K. Shaban, Towards Scalable

Traffic Management in Cloud Data Centers, IEEE

Transactions on Communications, Vol. 62, No. 3, pp. 1033-

1045, March, 2014.

[7] Y. Sahu, R. K. Pateriya, R. K. Gupta, Cloud Server

Optimization with Load Balancing and Green Computing

Techniques Using Dynamic Compare and Balance Algorithm,

Proc. of 5th International Conference on Computational

Intelligence and Communication Networks, Mathura, India,

2013, pp. 527-531.

[8] G. Xu, J. Pang, X. Fu, A Load Balancing Model Based on

Cloud Partitioning for the Public Cloud, Tsinghua Science

and Technology, Vol. 18, No. 1, pp. 34-39, February, 2013.

[9] T.-L. Pao, J.-B. Chen, Cost-effective Web Cluster Mechanism

for Burst Traffic, WSEAS Transactions on Computers, Vol. 6,

No. 4, pp. 666-673, April, 2007.

[10] H.-S. Wu, C.-J. Wang, J.-Y. Xie, TeraScaler ELB-an

Algorithm of Prediction-Based Elastic Load Balancing

Resource Management in Cloud Computing, Proc. of 27th

International Conference on Advanced Information

Networking and Applications Workshops, Barcelona, Spain,

2013, pp. 649-654.

[11] J.-B. Chen, Efficient Content Placement on Multimedia CDN

using Fuzzy Decision Algorithm, Applied Mathematics &

Information Sciences, Vol. 6, No. 2S, pp. 471-477, April,

2012.

[12] J.-B. Chen, Fuzzy Based Approach for P2P File Sharing

Detection, Journal of Internet Technology, Vol. 12, No.6, pp.

921-929, November, 2011.

[13] Z.-G.Chen, H.-S. Kang, S.-R. Kim, Design of a New Efficient

Hybrid System for Intrusion Detection Based on HSM Fuzzy

Decision Tree, Journal of Internet Technology, Vol. 16, No.5,

pp. 885-891, September, 2015.

[14] B. Radojevic, M. Zagar, Analysis of Issues with Load

Balancing Algorithms in Hosted (Cloud) Environments, Proc.

of the 34th International Convention of MIPRO, Opatija,

Croatia, 2011, pp. 416-420.

[15] Z. Zhang, L. Xiao, Y. Tao, J. Tian, S. Wang, H. Liu, A Model

Based Load-Balancing Method in IaaS Cloud, Proc. of 42nd

International Conference on Parallel Processing, Lyon,

France, 2013, pp. 808-816.

[16] E. Al-Rayis, H. Kurdi, Performance Analysis of Load

Balancing Architectures in Cloud Computing, Proc. of

European Modelling Symposium, Manchester, UK, 2013, pp.

520-524.

[17] G. Soni, M. Kalra, A Novel Approach for Load Balancing in

Cloud Data Center, Proc. of Advance Computing Conference,

Gurgaon, India, 2014, pp. 807-812.

[18] C.-C. Li, K. Wang, An SLA-aware Load Balancing Scheme

for Cloud Data Centers, Proc. of International Conference on

Information Networking, Phuket, Thailand, 2014, pp. 58-63.

Biographies

Hsin-Hung Chen received his B.S.

degree in the Department of Information

Management from Ming Chuan

University, Taoyuan, Taiwan, Republic of

China, in 2001 and M.S. degree in

Computer Science and Engineering in

Tatung University, Taipei, Taiwan,

Republic of China, in 2009. Currently, he is a Ph.D. student

in Computer Science and Engineering at Tatung University.

His research interests include network management, and

load balance.

Li-Shing Huang received his B.B.A.

degree in Tourism from Ming Chuan

University, Taoyuan, Taiwan, Republic of

China, in 2002 and M.S. degree in

Computer Science and Engineering in

Tatung University, Taipei, Taiwan,

Republic of China, in 2009. Currently, he

is a Ph.D. candidate in Computer Science and Engineering

at Tatung University. His research interests include cloud

computing and computer network management.

Jian-Bo Chen received the M.S. degree

in the department of electrical engineering

in National Taiwan University, Taipei,

Taiwan, Republic of China, in 1995, and

PhD degree in the department of

computer science and engineering in

Tatung University, Taipei, Taiwan,

Republic of China, in 2008. He is currently an assistant

professor in the department of information and

telecommunications engineering in Ming Chuan University,

Taoyuan, Taiwan, Republic of China. His research interests

include network management, network security, and load

balance.

Tsang-Long Pao received the B.S.

degree in electrical engineering from

Tatung Institute of Technology, Taipei,

Taiwan, Republic of China, in 1982, and

the M.S. and Ph.D. degree in the School

of Electrical and Computer Engineering

from the Georgia Institute of Technology

in 1990 and 1993, respectively. He is currently a Professor

in the department of computer science and engineering at the

Tatung University, Taipei, Taiwan, Republic of China. His

research interests include emotional speech recognition,

ultrasound transducer array, ultrasound signal processing,

digital image processing, and computer network

management.

696 Journal of Internet Technology Volume 19 (2018) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

