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Abstract 

Session-based remote management systems, e.g., 

customer premises equipment (CPE) WAN management 

protocol (CWMP), have predictable task counts in a 

session and each CPE only accesses its own data. When 

the systems are used in large-scale environments, a static 

load balancing (LB) policy can be applied with fewer 

session migrations. Nevertheless, unexpected crash 

events, e.g., software bugs or improper management, 

would cause the LB policy to be reassigned so as to 

degrade the system performance. A self-learning 

predictor (SLP) is thus proposed in this work to predict 

unexpected crash events and to achieve a better system 

performance in terms of resource usage and throughput. 

Specifically, the SLP records and monitors all crash 

patterns to evaluate the system stability. Moreover, the 

relation flags and probabilities of all crash patterns are 

dynamically updated for quick comparisons. If the SLP 

finds the current pattern is similar to a crash pattern, a 

migration request is raised to the load balancer to prevent 

performance degradation caused by the incoming crash. 

The simulation results indicate that a better system 

performance is obtained in a large-scale environment 

with the proposed SLP, especially as the number of 

servers in each cluster node increases. 

Keywords: Session-based, CWMP, Self-learning, 

Predictor, Crash pattern 

1 Introduction 

The increasing number of on-demand applications 

has spurred the demand for load balancing (LB) 

because a single server may be overloaded by a large 

number of simultaneous requests. On the other hand, 

system overloading can cause service degradations that 

may result in a significant loss in business credits. 

Thus, LBs are introduced in large-scale environments 

to distribute workloads across multiple computing 

resources and to optimize resource usage, throughput, 

and response time, as well as to prevent systems from 

overloading [1-3]. In addition, the concept of LB has 

been widely applied in various areas, e.g., network 

applications [4-5], file systems [6-7], cloud computing 

environments [8-11], data centers [12-14], and mobile 

sensor networks [15-19]. In general, LBs can be 

classified into two categories, i.e., static and dynamic 

algorithms [20]. In static LB algorithms [21], 

properties and capabilities of the system need to be 

acquired in advance, and should not vary with different 

system status. Thus, the execution of the LB is decided 

before the assignment of the tasks to the servers. On 

the contrary, dynamic LB algorithms are based on the 

current system status and redistribute tasks among 

individual servers during execution time [22]. A 

dynamic LB can be either centralized or distributed. 

Specifically, a single server is considered as a central 

node in the network to be responsible for all load 

distribution in centralized load distributions, while the 

responsibility is divided among all servers equally in 

distributed ones. 

Another typical application of using LB is web 

browsing, during which much of the user behavior is 

unpredictable. LBs thus require monitoring parameters 

of servers and networks to optimize performance. 

However, conventional LBs do not consider 

unexpected crash events. This is because many 

conventional LBs adopt the threshold mechanism, i.e., 

when the load of the system and/or network reaches a 

predefined threshold, a request for LB is raised. The 

unexpected crash events cannot be monitored and 

managed via the threshold mechanism. Note that crash 

events caused by software bugs or improper 

management may also occur repetitively. For instance, 

a JavaServer Pages (JSP) web designer mistakenly 

applies the “System.out.println” function to log an 

enormous amount of information. This could cause the 

I/O queue to be full of exceptions. Once the log files 

deplete the available space within the system volume, 

the web server then crashes. An additional example is 
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the launch of an improper or incorrect driver, 

especially an I/O driver. This may result in a kernel 

error that leads to a crash. 

The cases of LB in session-based remote 

management systems are quite different. For example, 

in the customer premises equipment (CPE) WAN 

management protocol (CWMP) [23], all 

communications and operations between CPEs and an 

auto configuration server (ACS) are invoked with the 

establishment of sessions. The capabilities of servers 

and networks are also predefined and prearranged prior 

to the setup of the management system. The metrics in 

session-based remote management systems, e.g., the 

maximum number of sessions, the number of tasks, the 

start time, the end time, the duration, and workloads, 

are known and predefined by the management system. 

Therefore, LBs in session-based remote management 

systems are straightforward and efficient with static 

arrangements due to fewer session migrations. 

Consequently, predicting crash events and preventing 

the reassignment of LB are the major tasks of the 

managements used in a large-scale environment 

because, once an unexpected crash event occurs, the 

LB policy has to be reassigned from the first static 

arrangement. 

Therefore, the repeatability feature of unexpected 

crash events is considered in this research, and a self-

learning predictor (SLP) is proposed to predict 

unexpected crash events and enables the system 

performance of session-based remote managements in 

an efficient way. First, the SLP dynamically obtains 

the patterns from each status queue of each server and 

aggregates the patterns into a single blending pattern. 

The SLP subsequently evaluates the similarity between 

the current pattern and historical crash patterns. If the 

SLP finds a match or similar pattern, a migration 

request is raised to the load balancer. Finally, the SLP 

dynamically updates the relation flags and probabilities 

of all crash patterns to achieve self-learning. The 

relation flags are devised for quick comparisons 

between the blending pattern and crash patterns. The 

probability parameter represents the probability of each 

crash pattern that leads the system to crash. To sum up, 

the main contributions of this work are the following 

two points. First, a precise and efficient prediction of 

unexpected crash events is achieved in this study. The 

other one is the realization of a more effective system 

performance in terms of throughput and resources 

utilization for session-based management systems used 

in large-scale environments. 

The rest of this paper is organized as follows. The 

LBs and related techniques are comprehensively 

reviewed in Section 2. The detailed design of the 

proposed SLP is in Section 3. In Section 4, the 

experimental setup to verify the feasibility of the 

proposed scheme is illustrated, and the evaluation 

results are also presented. Finally, Section 5 concludes 

the study. 

2 Related Works 

When the management system is used in a large-

scale environment, LB is the most common technique 

to be employed to enable the system performance in an 

efficient way. A number of prior works introduce static 

LBs in many research areas [24-25]. For example, 

some DNS (domain name system) oriented LBs are 

used to distribute workloads among a cluster of 

machines [24]. Also, the parameters that contribute to 

the current load of the system are considered in 

numerous hardware-based LB solutions to optimize the 

system performance [25]. 

Similar to static LBs, dynamic strategies have also 

been widely adopted in the last decade [26-28]. For 

instance, a service-aware adaptive link load balancing 

mechanism is conducted to balance workloads 

throughout networks [26]. Many dynamic LBs are also 

proposed to be used with a web server queueing 

algorithm [27]. Several types of dynamic LBs using 

distributed mechanisms have been the subject of many 

research works, e.g., a LB is pointed out that 

propagates the load information about the underloaded 

processors in the system to the overloaded processors, 

and makes probabilistic transfer of work units to obtain 

a good load distribution [28]. 

On the other hand, much attention has been directed 

toward LBs applied in session-based remote 

management systems, e.g., the CWMP [29-33]. Several 

issues and challenges of the resource management in a 

remote small cell network managed by the CWMP 

have been discussed and solved [29]. A power traffic 

sharing algorithm has also been implemented for the 

LB in small cell networks [30]. Nevertheless, the LB 

cannot be directly applied in the CWMP. Therefore, 

many experiments of static LBs have been proposed 

regarding the system performance enhancements in the 

CWMP. For example, a hybrid static LB has been 

carried out in the CWMP to improve the overall system 

performance [31]. Another static LB with a dynamic 

distribution mechanism is also reported to improve the 

system performance of the CWMP [32]. In these two 

studies [31-32], static LBs are widely applied in the 

CWMP. This is because the capabilities of servers and 

networks are predefined and prearranged prior to the 

setup of the management system in the CWMP. 

Therefore, LBs in session-based remote management 

systems are straightforward and efficient with static 

arrangements because many session migrations can be 

avoided. Conversely, dynamic LBs are not suitable for 

session-based remote management systems. The major 

drawback of dynamic LBs is the run-time overhead 

due to the time consumption for selection of processes, 

processing for job transformations, and the 

communication delay due to task relocation itself [1]. 

Furthermore, since dynamic algorithms should collect 

and react to system states, more complicated than static 

algorithms are essentially in the CWMP [33]. 
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Consequently, preventing reassignments of LBs are the 

major jobs of session-based remote management 

systems used in large-scale environments, e.g., caused 

by unexpected crash events. 

Several efforts have thus been made to achieve a 

more effective LB solution with prediction algorithms 

[33-36]. For instance, a dynamic LB has been 

discussed to predict the future loading of nodes based 

on the statistics of seasonal changes [33]. Another LB 

adopts the historical load data to predict the future load 

level, and transform the prediction into the traditional 

classification problem [34]. An efficient LB with load 

prediction is achieved to optimize the performance in 

terms of server resource utilization with minimum 

energy consumption [35]. A workload prediction 

method using grey forecasting model is also introduced 

to predict the workload [36]. Since the prediction of 

unexpected crash events that affect the system 

performance in a large-scale environment is not 

mentioned and considered in previous works, they are 

thus not suitable to be applied to session-based remote 

management systems in large-scale environments. 

Therefore, an efficient and precise prediction for 

unexpected crash events is needed to be developed for 

the management systems used in large-scale 

environments, and the parameters of server capabilities 

and access objects must be considered simultaneously. 

To sum up, the comparisons between the proposed 

SLP that combines with a static LB and other previous 

mechanisms have been summarized in Table 1. 

Table 1. Comparisons between the proposed SLP that combines with a static LB and other previous mechanisms 

Mechanisms LB policies Advantages Disadvantages 

Janbeglou [24] Static LB with round-robin DNS-based security approach is 

achieved 

DNS protocol is needed and limited 

to network applications 

Li [25] Static LB with weighted least-

connections 

LB and high availability are 

provided with an efficient 

rescheduling mechanism 

High cost with hardware-based 

solution 

Shang [26] Dynamic LB with centralized Path of the best link quality is 

dynamically selected to meets the 

Qos constraint 

Optimization strategy results in 

much time consumption 

Harikesh [27] Dynamic LB with distributed Drop rates are minimized in 

homogeneous environments 

More suitable for high traffic case of 

web servers only 

Harshitha [28] Dynamic LB with centralized Effective load distribution while 

incurring less overhead 

Randomized algorithm may be 

improved in advance 

Chuang [29] Dynamic LB with distributed Efficient resource management with 

LB strategy 

Focus on application in small cell 

networks 

Fortes [30] Dynamic LB with centralized Proposed power traffic sharing 

algorithm is proper for mobile 

environments 

Application is limited to mobile 

environments 

Lee [31] Static LB with hybrid sticky and 

replication 

Suitable for environments with 

failure rates from low to high 

A threshold that affects performance 

needs to be predefined manually 

Lee [32] Static LB with replication Effective resource utilization with 

LB 

None prediction for unexpected 

crash events is exploited 

Sarika [33] Dynamic LB with distributed More data transfer with minimum 

response time 

Prediction depends on statistics of 

seasonal changes may not precise 

enough 

Tong [34] Dynamic LB with distributed Prediction problem is simplified into 

traditional classification 

transformation 

Numerous data is required for 

prediction and classification 

methods and vary depend on 

different applications 

Nagpure [35] Dynamic LB with distributed Efficient LB with future load 

prediction 

Prediction depends on processor and 

memory utilization, may also 

consider network connections and 

access objects 

Jheng [36] Dynamic LB with distributed Fewer data is applied to predict 

workloads accurately 

Poor and unstable performance in 

fluctuant conditions 

Proposed SLP Static LB with the proposed SLP Many migrations and crashes are 

avoided to improve throughput and 

resources utilization with a precise 

prediction 

Extra predictor is essential for 

unexpected crash events predictions 
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3 System Design 

3.1 System Architecture 

Figure 1 shows the proposed architecture in a large-

scale environment. The incoming requests issued by 

clients are directed to a load balancer. In the CWMP 

environment, a static LB policy is applied. As a result, 

which cluster node should handle the requests is 

prearranged. The load balancer then forwards the 

requests to the predefined cluster node. 

Client 3

Client M

Client 2

Cluster Node N 

Client 1

Cluster Node 3

Cluster Node 2

Cluster Node 1

Load Balancer

Self-learning 

Predictor 

 

Figure 1. Architecture in a large-scale environment 

The proposed SLP is created in the load balancer for 

session-based remote management systems to 

continually monitor hardware parameters, network 

statuses, and crash events to evaluate and predict the 

stability of the system in a large-scale environment. 

Figure 2 displays the proposed system architecture of 

the SLP. The Hardware Performance Monitor is 

responsible for monitoring the status of all the servers, 

including CPU usage, CPU temperature, memory 

usage, storage usage, and other hardware parameters. 

The Network Status Monitor monitors the network 

connection time, network connection count, and status 

of the networks. The Blending Module subsequently 

normalizes the output patterns from the above two 

components and aggregates the output patterns into a 

single blending pattern. Note that the Crash Monitor 

monitors all access objects and records the crash 

patterns in the Crash Pattern Table. The key 

component, the Crash Prediction Module, is in charge 

of acquiring the outputs from the Blending Module and 

Crash Pattern Table, and then dynamically evaluates 

the stability of the system by predicting if the current 

pattern will subsequently lead the system into an 

unstable state. Finally, depending on the prediction, the 

Evaluation Module is invoked to adjust and update the 

probability and relation flags of each crash pattern, 

which are stored in the Crash Pattern Table. 

Crash Pattern 

Table

Hardware 

Performance 

Monitor Blending 

Module

SLP

Crash Monitor

Crash 

Prediction 

Module

Evaluation 

Module

Network Status 

Monitor

Access Objects

Network Connection Time, Network 

Connection Count

CPU Usage, CPU Temperature, 

Memory Usage, Storage Usage 

 

Figure 2. System architecture of the proposed SLP 

3.2. System Flows 

The SLP is divided into the Blending Phase (BP), 

Checking Phase (CP), Detecting Phase (DP), and 

Estimating Phase (EP). Related notations and their 

descriptions are summarized in Table 2 to facilitate the 

description of the system flows. The detailed system 

flows of the SLP, from Step 1 to Step 10, are illustrated 

in Figure 3. Each server has its own fixed-length status 

queue. Object access records, CPU usage, CPU 

temperature, memory usage, storage usage, network 

connection time, and connection count are all stored in 

each server status queue. 

Table 2. Notations for the proposed SLP 

Variable Detailed Descriptions 

Ne Pattern counts, including CPU, memory, and 

connection. 

Qtype Status queue set, including Qcpu, Qmem, and Qconn. 

Lq Status queue length 

P Pattern set P={Ptype}, including Pcpu, Pmem, and 

Pconn. 

Lp Pattern length 

Rtype Relation flag of each corresponding Ptype 

Wtype Weighted value of each corresponding Ptype 

s Sub-pattern length, where sub-pattern means the 

original pattern has been blended with shorter 

length. 

d Weighted Manhattan distance 

p’ Corresponding sub-pattern in Crash Pattern Table 

Pmax Predefined maximum distance used in the 

weighted Manhattan distance approach 

Prob Probability of each pattern leads the system to 

crash 

c Number of crash events; initial value c=1 

m Number of mispredictions; initial value m=0 

a Number of accurate predictions; initial value a=0 

α Decreasing factor of Prob 

β Increasing factor of Prob 

TS Threshold of similarity between objects 

SP Safe point in the weighted Manhattan distance 

approach 

TR Threshold of the distance to identify the 

dependence of relationships 
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7. Reduce 
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Figure 3. Flows of the proposed SLP 

The first phase of the SLP, the Blending Phase, 

acquires patterns from each server’s status queue (Step 

1) and aggregates the patterns into a single blending 
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pattern (Step 2). The Blending Phase also builds up the 

relation flags for each pattern and records them in the 

Crash Pattern Table. The relation flags are 

implemented to quickly evaluate the stability of the 

system by ignoring unrelated patterns. To have an 

efficient and fast evaluation, the BP also extracts the 

metrics in the status queue, e.g., CPU usage, memory 

usage, and connection count, to form a sub-pattern 

with the length of s = Lp / Ne. The content of ith 

parameter in sub-patterns of set P, which is defined as 

pattern set {Ptype}, is denoted as in Eq. (1). Note that 

the objective of Eq. (1) is to extract the original pattern 

into a blending pattern with shorter length to save 

computing resource. Besides, Qtype(j) indicates each 

element j in the status queue set Qtype, including Qcpu, 

Qmem, and Qconn. 

 [ ] ( )

( )1 1
q

q

L
i

s
Ltype type j

j i
q s

s
P i Q

L

+ −

= ×

⎛ ⎞
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⎝ ⎠
∑  (1) 

The second phase of the SLP, the Checking Phase, 

regularly checks whether the current blending pattern 

is similar to an identified crash pattern in the Crash 

Pattern Table (Step 3). A weighted Manhattan distance 

approach [37] is applied to evaluate the similarity and 

find a corresponding one if the similarity is larger than 

a predefined threshold TS. For instance, the parameter 

of the CPU usage in the current blending pattern only 

needs to be compared with the CPU usage in the crash 

pattern, and it does not need to be compared with other 

parameters in the crash pattern. In addition, for the 

Manhattan distance approach, the distance between 

two points in a grid based on a strictly horizontal 

and/or vertical path, the Manhattan distance is the 

simple sum of the horizontal and vertical components. 

The Manhattan distance approach is thus a simple and 

time-saving comparison approach. Moreover, weighted 

values are added to the Manhattan distance approach to 

achieve an efficient prediction of the stability of the 

system. The weighted value Wtype in the weighted 

Manhattan distance approach is represented as in Eq. 

(2). 

 /type type ieach type i
W R R= ∑  (2) 

The expression of weighted Manhattan distance d in 

the weighted Manhattan distance approach is defined 

as in Eq. (3). Note that p’j is the corresponding sub-

pattern of the original pattern pj in Crash Pattern Table. 

Furthermore, a predefined maximum distance Pmax is 

used to obtain the Manhattan distance, and the 

weighted value of each type wi, which is defined as 

Wtype in Eq. (2), is considered to calculate the final 

weighted Manhattan distance d of each blending 

pattern. 

 ( )'

max
i

i j jeachtype i each j in p
d w p p p= − −∑ ∑  (3) 

If the CP finds a match or a similar pattern, the SLP 

subsequently enters the third phase, the Detecting 

Phase, to evaluate and predict the stability of the 

system (Step 4). If the DP predicts that the current 

blending pattern is a crash event, a migration is 

triggered (Step 5). The DP then checks whether the 

prediction is correct for the EP (Step 6). 

Finally, the Estimating Phase updates the probability 

and relation flags of each crash pattern in the Crash 

Pattern Table according to the predictions. The 

probability of each pattern leading to a system crash, 

Prob, is defined by heuristic rules as indicated in Eq. 

(4). In the design, the increasing and decreasing factors 

update slowly in the first several rounds. The factors 

subsequently update at an exponential growth rate and 

also update slowly in the final saturated state. 

 ( )
1

Prob ln 1c

e
α

= × +  (4) 

If the DP made a wrong prediction (Step 7), the EP 

updates the variable m as m + 1, which means the 

number of mispredictions increases by 1. The 

probability Prob is decreased as in Eq. (5). 
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e
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On the other hand, if the prediction of the DP is 

correct (Step 8), the EP subsequently increases the 

variable a to a + 1. The probability Prob is increased 

as in Eq. (6). 
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Finally, the related contents of the Crash Pattern 

Table are updated by the EP (Step 9). The relation 

flags of these changed patterns are also updated by the 

EP (Step 10). After the EP is completed, the system 

flow goes back to the BP, and the unexpected crash 

events are monitored and predicted by both the CP and 

DP. 

4 Experimental Results and Discussion 

Several experimental simulations were performed to 

demonstrate the feasibility of the proposed SLP, 

including the prediction precision and the overall 

system performance in a large-scale environment. The 

parameters used in the proposed experimental 

environments to evidence the average precision and 

prediction time are explored in Section 4.1. Evaluation 

results in terms of memory usage, time consumption, 

and connection failure are shown in Section 4.2 to 

verify the performance of the proposed SLP combines 

with a static LB policy. 
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4.1 Evaluation of the Prediction Precision 

To depict the feasibility of the SLP, the test strategy 

is to verify the prediction precision of the SLP with 

various conditions and situations, e.g., with 

considering different memory requirements and 

different numbers of execution loops. Therefore, the 

experiments in this study are verified with two 

different tasks using the CWMP protocol. The first task, 

Type A, has a low memory requirement (20 to 40 MB 

with normal distribution). The other task, Type B, has 

a high memory requirement (80 to 110 MB with 

inverse normal distribution). Note that the tails of the 

inverse normal distribution decrease more slowly than 

the normal distribution, and are thus more suitable to 

model numerically large values. In addition, the 

number of tasks for Type A and Type B is set to 1,200. 

Table 3 summarizes the experimental setup values of 

the variables for the proposed SLP. 

Table 3. Experimental setup values of the variables for 

the proposed SLP 

Variable Experimental Setup Value 

Lq 100 

s 3 

α 4 

β 2 

Prob 0.8 

Lp 5 

TS 40 

SP 30 

Pmax 100 

TR 10 

 

In the CWMP implementation, the execution period 

of the remote procedure call (RPC) is set as 60 seconds. 

Moreover, 30 specific rules are predefined to denote 

the crash events. For instance, when the access object 

ID 99 under the CPU usage is more than 90% and the 

memory usage is greater than 80%, the system 

subsequently crashes. An additional example of the 

crash rule is when access to object ID 55 behind object 

ID 90 under the capacity of the network connection is 

greater than 95%. In the simulation, all variables 

including object access records, CPU usage, CPU 

temperature, memory usage, storage usage, network 

connection time, and connection count are generated 

randomly. When the generated pattern matches the 

predefined rules, the pattern is identified as a crash 

event that leads to a system crash. As the crash rules 

are predefined, all crash events belong to the specific 

types of patterns. This means the same types of crash 

events occur repetitively. As a result, the repeatability 

feature of unexpected crash events is simulated. The 

test bed of the ACS server was equipped with Intel 

Core i7 920 2.66 GHz, DDR3-2133 8 GB, Windows 7 

Professional 64-bits, and JavaSE-1.7 environment. All 

the experimental results were simulated more than 500 

times to demonstrate the feasibility of the SLP. 

Average precision. Two cases with 20 rounds, 

including different memory requirements and different 

numbers of execution loops, were simulated. Note that 

the definition of each execution loop indicates that the 

ACS completes all tasks requested by the CPEs. In the 

case of different memory requirements, the memory 

requirement of Type B is set between 80 and 110 MB 

deliberately, and the number of execution loops is set 

from 1,000 to 11,000 times. As indicated in Figure 4, 

the SLP spends a period of time collecting crash 

patterns and recording them in the Crash Pattern Table. 

During this time, there are few crash patterns in the 

Crash Pattern Table to be compared. Few predictions 

are made, and the true prediction (precision) in the first 

round is 71.4%. Specifically, the definition of precision 

is the SLP correctly predicting the crash events over all 

predictions, including true predictions and false 

predictions. Nevertheless, it indicates that the SLP 

prediction has a high hit rate in the initial state. After 

the second round, the precision is up to 90.5%, which 

indicates that the SLP prediction is both efficient and 

precise. Additionally, the average precision is greater 

than 93% after 5 rounds. The precision thus becomes 

steady after only a few rounds because there tends to 

be specific types of unexpected crash events, and the 

self-learning mechanism does an efficient and precise 

prediction in the following rounds. 
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Figure 4. Round times vs. average precision given 

different memory requirements 

In the other case, different numbers of execution 

loops are considered. The number of execution loops 

of Type A is set between 8,000 and 11,000 times 

deliberately, and the memory requirement is set 

between 20 and 40 MB. As indicated in Figure 5, the 

results demonstrate that the precision values in the first 

and the second rounds are 74.2% and 92.5%, 

respectively. It also proves the high hit rate for the SLP 

to predict crash events. Few predictions are in the first 

round because only several crash patterns in the Crash 

Pattern Table are compared for the SLP. After 5 rounds, 

the average precision is up to 93%. This also indicates 

that the precision becomes steady after only a few 

rounds because of the repeatability feature of 
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unexpected crash events. One may readily observe that 

the self-learning mechanism makes effective and 

precise predictions for the CWMP network. 
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Figure 5. Round times vs. average precision given 

different numbers of execution loops 

Average prediction time. Table 4 represents two 

simulated cases of the average prediction time within 5 

rounds using the CWMP as an example. These two 

cases include the crash case and the non-crash case. As 

indicated by the experimental results, the first round in 

the crash case takes the most time, approximately 0.34 

ms, because the SLP spends a considerable amount of 

time recording all crash events in the Crash Pattern 

Table. However, the prediction time of the other 

rounds are all under 0.16 ms, and the average 

prediction time is 0.1 ms. As the execution period of 

the RPC is set to 60 seconds, the average prediction 

time is thus less than 0.00056% of the execution period 

even in the case of the largest required time (0.34 ms). 

Consequently, the results indicate that the proposed 

SLP is a precise and time-saving prediction mechanism. 

Table 4. Average prediction time in different cases 

within 5 rounds 

 

Average Prediction 

Time: Crash Case 

(msec.) 

Average Prediction 

Time: Non-Crash Case 

(msec.) 

Round 1 0.333436 0.009727 

Round 2 0.141699 0.011907 

Round 3 0.153717 0.011812 

Round 4 0.154657 0.016890 

Round 5 0.155137 0.009998 

 

4.2 Evaluation of the Overall System 

Performance 

The main objective of a LB used in a large-scale 

environment is to maximize the resource usage and 

system throughput. Hence, the test strategy to verify 

the overall system performance is to compare the 

resource utilization (e.g., memory usage) and the 

throughput (e.g., the execution time while handling the 

same number of tasks or sessions) among various LB 

mechanisms. On the other hand, to evaluate the system 

performance when used with the proposed SLP, a 

simple static LB, i.e., a sticky session management is 

applied to combine with the SLP. In the sticky session 

management, once a session is established, it is sent to 

one of the cluster servers based on a decision made by 

the load balancer. Then, all subsequent requests in this 

session are directed to the same server. The major 

advantage of this technique is that the memory space is 

well utilized. Conversely, once a session is established 

in the session replication, it is replicated to all cluster 

servers. The major advantage of this technique is its 

rapid recovery from unexpected crash events (e.g., due 

to network failure or a down server). 

Six different techniques are compared in the 

experiments, including the proposed SLP combines 

with a sticky session, the sticky session, the session 

replication, the primary-secondary (PS) session 

replication in J2EE session management [38], a hybrid 

technique [31], and a dynamic distribution (DD) 

technique [32]. Note that the PS scheme always 

duplicates sessions to only one or two cluster nodes, 

whereas the hybrid technique duplicates sessions to all 

servers once the connection failure rate reaches a 

predefined threshold, and it adopts the sticky session if 

the failure rate is low. The number of cluster nodes to 

be replicated in the DD technique depends on the 

network situation and the connection failure rates. 

As mentioned in a session admission control 

mechanism in a previous work [39], a high connection 

failure rate results from the situations when clients are 

unable to get the responses from a server (e.g., because 

of unstable wireless links or overloaded servers). 

Therefore, a wide range of high connection failure rate 

that leads the system to crash, up to 10%, is used to 

simulate the target environment. The simulations are 

continuously performed as the crash rate grows from 

1% to 10%. An environment including diverse clients 

with wired or wireless connections is simulated to 

depict a wide range of crash rates by developing 

software programs. Specifically, in the target 

environment, the connections among servers in a 

cluster node are generally wired links whereas clients 

may connect to a server cluster with either wired or 

wireless links. Additionally, according to a previous 

report [40], most resources are occupied by resource-

intensive tasks that have long durations. The memory 

demands of a memory-intensive task could be greater 

than 1 gigabyte. Hence, redundant memory usage 

should be reduced for session management, especially 

in a large-scale environment and considering the 

overall system performance. Consequently, the 

experimental environments are set as shown in Table 5. 
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Table 5. Parameters used in the simulation of overall 

system performance evaluation 

Parameter Value 

Number of clients 10,000 

Number of cluster nodes 5-10 

Number of sessions 1,000,000 

Crash rate 1%-10% 

 

In the simulation, the network architecture of 

simulations is illustrated as shown in Figure 1. In 

addition, an Exponential distribution is applied to 

create the time consumption of the session operations, 

such as the time of session connection, session creation, 

and session replication. The mean of the Exponential 

distribution is set at 100 ms for both the connection 

time and session replication. For the session creation 

time, the mean of the Exponential distribution is 1,000 

ms. Similarly, in the memory usage simulation, the 

consumption of memory space of each session is 

generated by Gaussian distribution with an average of 

200 bytes and a standard deviation of 50 bytes. Note 

that the self-learning mechanism in the SLP is 

continuously adopted to learn and predict unexpected 

crash events as the crash rate increases from 1% to 

10%. This means the predicted results in previous 

simulations are also applied to predict unexpected 

crash events in the next simulation. 

Memory usage. Figure 6 and Figure 7 show the 

comparison of total memory usage of all cluster nodes 

with server counts of 5 and 10, respectively. The data 

in these two figures show that the memory usage of the 

session replication remains constant as the crash rate 

increases from 1% to 10% because session replication 

always sends a session to all cluster nodes. On the 

other hand, the memory usage of the sticky session and 

the PS are proportional to the crash rate because when 

any session disconnection occurs, the system has to 

rebuild the session, which occupies more memory 

space. For the hybrid session management, the memory 

usage is near that of the sticky session for the case in 

which the crash rate is low. However, the memory 

usage of the hybrid and the DD techniques grow 

dramatically as the crash rate increases because once 

the crash rate increases, session replication is applied 

to all new sessions. 

As shown in Figure 6 and Figure 7, the memory 

usage of the session replication, the sticky session, the 

hybrid, and the DD techniques greatly increase as the 

number of servers in each cluster node increases from 

5 to 10 servers. Conversely, the memory usage of the 

SLP only slightly increases. Moreover, the memory 

usage of the SLP is comparable similar to that of the 

PS scheme, which is the best one among these six 

techniques. This is because the PS scheme always 

duplicates sessions to only one or two server nodes, so 

that less memory usage is required. 

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

M
e
m

o
ry

 U
sa

g
e
 (
M

B
y
te

s)

 

Figure 6. Comparison of memory usage with the 

cluster node of 5 servers 
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Figure 7. Comparison of memory usage with the 

cluster node of 10 servers 

Time consumption. The comparisons of time 

consumption in a server cluster of 5 servers and 10 

servers are demonstrated in Figure 8 and Figure 9, 

respectively. The results in these two figures show that 

the time consumption of the sticky session and PS 

scheme increase dramatically when the crash rate is 

greater than 3%. However, the time consumption of 

using the SLP is significantly lower than that of the 

sticky session and that of the PS scheme. In addition, 

the time consumption of the session replication is 

slightly greater than that of both the DD and the SLP 

because the session replication replicates sessions to all 

cluster nodes, which leads to fewer crash events. 

Specifically, the time consumption of the SLP is 

close to that of the session replication, which is the 

superior one among all techniques. The main reason is 

that sessions are replicated to all cluster nodes in the 

session replication which results in fewer crash events, 

so that a better performance is obtained. 
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Figure 8. Comparison of time consumption with the 

cluster node of 5 servers 
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Figure 9. Comparison of time consumption with the 

cluster node of 10 servers 

Memory time product. The evaluation measure, 

memory time product (MTP) is applied to provide a 

general performance evaluation of these techniques. 

MTP is the memory usage times the time consumption. 

Thus, a lower MTP indicates a better performance. 

Figure 10 and Figure 11 depict the MTPs of the SLP, 

the DD, the sticky session, the session replication, the 

PS scheme, and the hybrid technique. The results in 

Figure 10 and Figure 11 confirm that the static LB 

policy combined with the SLP has the best MTP than 

the other five techniques. Moreover, in Figure 10, the 

MTP of the SLP is slightly better than that of the DD. 

Nevertheless, as the number of servers in each cluster 

node increases from 5 to 10, the performance of the 

SLP is much better than that of the DD and the other 

techniques, as shown in Figure 11. As a result, the 

comparison of the MTPs shows that the SLP has the 

lowest MTP, meaning that the SLP generally 

outperforms the other techniques, especially as the 

number of servers in each cluster node increases. 
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Figure 10. Comparison of MTP with the cluster node 

of 5 servers 
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Figure 11. Comparison of MTP with the cluster node 

of 10 servers 

Connection failure. Figure 12 depicts the comparison 

of the number of actual connection failures. The 

experiments were executed on a system with 10 servers 

in each cluster node. As shown in Figure 12, the failure 

count of the sticky session grows dramatically when 

the crash rate is higher than 2.8%. Once a crash occurs, 

the system repeatedly re-connects and re-sends until 

the communication is completed. A higher crash rate 

thus leads to frequent failures. Compared with the 

sticky session, the actual failure count of the SLP is 

much lower than that of the sticky session because a 

large number of crash events are predicted precisely 

with the self-learning mechanism in the SLP. 

Moreover, the actual connection failure count of the PS 

scheme is much higher than that of the SLP. The actual 

connection failure count when using the SLP is slightly 

greater than that when using the session replication. 

This finding indicates that the session replication 

technique outperforms the SLP in merely reducing 

limited crash failures, but at the cost of much higher 

memory consumption. In summary, the SLP eliminates 

most migrations that are caused by unexpected crash 

events with less memory usage because of highly 

precise predictions. 
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Figure 12. Comparison of actual connection failure 

5 Conclusions 

Unlike many LB policies developed for general 

applications, the predictability of metrics in a session-

based remote management system have been 

additionally exploited, e.g., the CWMP. Furthermore, 

unexpected crash events are the key factors affecting 

the system performance of a session-based remote 

management system in large-scale environments. 

Given that crash events may occur repetitively, a self-

learning predictor named SLP is proposed in this work. 

To verify its feasibility, the SLP that combines with a 

sticky session has been applied to the CWMP in a 

large-scale environment. From the experimental 

studies, the prediction of the SLP achieves a high hit 

rate (over 71%) in the initial state, and the precision 

becomes steady with a very high hit rate (over 93%) 

after only a few rounds (within 5 rounds). The average 

prediction time is equal to 0.1 ms, which is less than 

0.00056% of the execution period, even in the case of 

the largest required time (0.34 ms). Moreover, the 

MTP experimental results show a static LB combined 

with the proposed SLP is more effective in terms of 

resources utilization and throughput, i.e., has a more 

efficient performance in terms of memory usages and 

the execution time while handling a large number of 

sessions. Consequently, with the proposed SLP, a 

session-based remote management system can achieve 

a better system performance in a large-scale 

environment, especially as the number of servers in 

each cluster node increases. 
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