
Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 657

Exploiting a Self-learning Predictor for Session-based Remote

Management Systems in a Large-scale Environment

Kuen-Min Lee1,2, Wei-Guang Teng1, Mu-Kai Huang2, Chih-Pin Freg1, Ting-Wei Hou1*

1 Department of Engineering Science, National Cheng Kung University, Taiwan
2 Information and Communications Research Laboratories,

Industrial Technology Research Institute, Taiwan

allen_lee@itri.org.tw, wgteng@mail.ncku.edu.tw, mkhuang@itri.org.tw,

cpfong@fotech.edu.tw, hou@nc.es.ncku.edu.tw

*Corresponding Author: Wei-Guang Teng; E-mail: wgteng@mail.ncku.edu.tw

DOI: 10.3966/160792642018051903004

Abstract

Session-based remote management systems, e.g.,

customer premises equipment (CPE) WAN management

protocol (CWMP), have predictable task counts in a

session and each CPE only accesses its own data. When

the systems are used in large-scale environments, a static

load balancing (LB) policy can be applied with fewer

session migrations. Nevertheless, unexpected crash

events, e.g., software bugs or improper management,

would cause the LB policy to be reassigned so as to

degrade the system performance. A self-learning

predictor (SLP) is thus proposed in this work to predict

unexpected crash events and to achieve a better system

performance in terms of resource usage and throughput.

Specifically, the SLP records and monitors all crash

patterns to evaluate the system stability. Moreover, the

relation flags and probabilities of all crash patterns are

dynamically updated for quick comparisons. If the SLP

finds the current pattern is similar to a crash pattern, a

migration request is raised to the load balancer to prevent

performance degradation caused by the incoming crash.

The simulation results indicate that a better system

performance is obtained in a large-scale environment

with the proposed SLP, especially as the number of

servers in each cluster node increases.

Keywords: Session-based, CWMP, Self-learning,

Predictor, Crash pattern

1 Introduction

The increasing number of on-demand applications

has spurred the demand for load balancing (LB)

because a single server may be overloaded by a large

number of simultaneous requests. On the other hand,

system overloading can cause service degradations that

may result in a significant loss in business credits.

Thus, LBs are introduced in large-scale environments

to distribute workloads across multiple computing

resources and to optimize resource usage, throughput,

and response time, as well as to prevent systems from

overloading [1-3]. In addition, the concept of LB has

been widely applied in various areas, e.g., network

applications [4-5], file systems [6-7], cloud computing

environments [8-11], data centers [12-14], and mobile

sensor networks [15-19]. In general, LBs can be

classified into two categories, i.e., static and dynamic

algorithms [20]. In static LB algorithms [21],

properties and capabilities of the system need to be

acquired in advance, and should not vary with different

system status. Thus, the execution of the LB is decided

before the assignment of the tasks to the servers. On

the contrary, dynamic LB algorithms are based on the

current system status and redistribute tasks among

individual servers during execution time [22]. A

dynamic LB can be either centralized or distributed.

Specifically, a single server is considered as a central

node in the network to be responsible for all load

distribution in centralized load distributions, while the

responsibility is divided among all servers equally in

distributed ones.

Another typical application of using LB is web

browsing, during which much of the user behavior is

unpredictable. LBs thus require monitoring parameters

of servers and networks to optimize performance.

However, conventional LBs do not consider

unexpected crash events. This is because many

conventional LBs adopt the threshold mechanism, i.e.,

when the load of the system and/or network reaches a

predefined threshold, a request for LB is raised. The

unexpected crash events cannot be monitored and

managed via the threshold mechanism. Note that crash

events caused by software bugs or improper

management may also occur repetitively. For instance,

a JavaServer Pages (JSP) web designer mistakenly

applies the “System.out.println” function to log an

enormous amount of information. This could cause the

I/O queue to be full of exceptions. Once the log files

deplete the available space within the system volume,

the web server then crashes. An additional example is

658 Journal of Internet Technology Volume 19 (2018) No.3

the launch of an improper or incorrect driver,

especially an I/O driver. This may result in a kernel

error that leads to a crash.

The cases of LB in session-based remote

management systems are quite different. For example,

in the customer premises equipment (CPE) WAN

management protocol (CWMP) [23], all

communications and operations between CPEs and an

auto configuration server (ACS) are invoked with the

establishment of sessions. The capabilities of servers

and networks are also predefined and prearranged prior

to the setup of the management system. The metrics in

session-based remote management systems, e.g., the

maximum number of sessions, the number of tasks, the

start time, the end time, the duration, and workloads,

are known and predefined by the management system.

Therefore, LBs in session-based remote management

systems are straightforward and efficient with static

arrangements due to fewer session migrations.

Consequently, predicting crash events and preventing

the reassignment of LB are the major tasks of the

managements used in a large-scale environment

because, once an unexpected crash event occurs, the

LB policy has to be reassigned from the first static

arrangement.

Therefore, the repeatability feature of unexpected

crash events is considered in this research, and a self-

learning predictor (SLP) is proposed to predict

unexpected crash events and enables the system

performance of session-based remote managements in

an efficient way. First, the SLP dynamically obtains

the patterns from each status queue of each server and

aggregates the patterns into a single blending pattern.

The SLP subsequently evaluates the similarity between

the current pattern and historical crash patterns. If the

SLP finds a match or similar pattern, a migration

request is raised to the load balancer. Finally, the SLP

dynamically updates the relation flags and probabilities

of all crash patterns to achieve self-learning. The

relation flags are devised for quick comparisons

between the blending pattern and crash patterns. The

probability parameter represents the probability of each

crash pattern that leads the system to crash. To sum up,

the main contributions of this work are the following

two points. First, a precise and efficient prediction of

unexpected crash events is achieved in this study. The

other one is the realization of a more effective system

performance in terms of throughput and resources

utilization for session-based management systems used

in large-scale environments.

The rest of this paper is organized as follows. The

LBs and related techniques are comprehensively

reviewed in Section 2. The detailed design of the

proposed SLP is in Section 3. In Section 4, the

experimental setup to verify the feasibility of the

proposed scheme is illustrated, and the evaluation

results are also presented. Finally, Section 5 concludes

the study.

2 Related Works

When the management system is used in a large-

scale environment, LB is the most common technique

to be employed to enable the system performance in an

efficient way. A number of prior works introduce static

LBs in many research areas [24-25]. For example,

some DNS (domain name system) oriented LBs are

used to distribute workloads among a cluster of

machines [24]. Also, the parameters that contribute to

the current load of the system are considered in

numerous hardware-based LB solutions to optimize the

system performance [25].

Similar to static LBs, dynamic strategies have also

been widely adopted in the last decade [26-28]. For

instance, a service-aware adaptive link load balancing

mechanism is conducted to balance workloads

throughout networks [26]. Many dynamic LBs are also

proposed to be used with a web server queueing

algorithm [27]. Several types of dynamic LBs using

distributed mechanisms have been the subject of many

research works, e.g., a LB is pointed out that

propagates the load information about the underloaded

processors in the system to the overloaded processors,

and makes probabilistic transfer of work units to obtain

a good load distribution [28].

On the other hand, much attention has been directed

toward LBs applied in session-based remote

management systems, e.g., the CWMP [29-33]. Several

issues and challenges of the resource management in a

remote small cell network managed by the CWMP

have been discussed and solved [29]. A power traffic

sharing algorithm has also been implemented for the

LB in small cell networks [30]. Nevertheless, the LB

cannot be directly applied in the CWMP. Therefore,

many experiments of static LBs have been proposed

regarding the system performance enhancements in the

CWMP. For example, a hybrid static LB has been

carried out in the CWMP to improve the overall system

performance [31]. Another static LB with a dynamic

distribution mechanism is also reported to improve the

system performance of the CWMP [32]. In these two

studies [31-32], static LBs are widely applied in the

CWMP. This is because the capabilities of servers and

networks are predefined and prearranged prior to the

setup of the management system in the CWMP.

Therefore, LBs in session-based remote management

systems are straightforward and efficient with static

arrangements because many session migrations can be

avoided. Conversely, dynamic LBs are not suitable for

session-based remote management systems. The major

drawback of dynamic LBs is the run-time overhead

due to the time consumption for selection of processes,

processing for job transformations, and the

communication delay due to task relocation itself [1].

Furthermore, since dynamic algorithms should collect

and react to system states, more complicated than static

algorithms are essentially in the CWMP [33].

Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 659

Consequently, preventing reassignments of LBs are the

major jobs of session-based remote management

systems used in large-scale environments, e.g., caused

by unexpected crash events.

Several efforts have thus been made to achieve a

more effective LB solution with prediction algorithms

[33-36]. For instance, a dynamic LB has been

discussed to predict the future loading of nodes based

on the statistics of seasonal changes [33]. Another LB

adopts the historical load data to predict the future load

level, and transform the prediction into the traditional

classification problem [34]. An efficient LB with load

prediction is achieved to optimize the performance in

terms of server resource utilization with minimum

energy consumption [35]. A workload prediction

method using grey forecasting model is also introduced

to predict the workload [36]. Since the prediction of

unexpected crash events that affect the system

performance in a large-scale environment is not

mentioned and considered in previous works, they are

thus not suitable to be applied to session-based remote

management systems in large-scale environments.

Therefore, an efficient and precise prediction for

unexpected crash events is needed to be developed for

the management systems used in large-scale

environments, and the parameters of server capabilities

and access objects must be considered simultaneously.

To sum up, the comparisons between the proposed

SLP that combines with a static LB and other previous

mechanisms have been summarized in Table 1.

Table 1. Comparisons between the proposed SLP that combines with a static LB and other previous mechanisms

Mechanisms LB policies Advantages Disadvantages

Janbeglou [24] Static LB with round-robin DNS-based security approach is

achieved

DNS protocol is needed and limited

to network applications

Li [25] Static LB with weighted least-

connections

LB and high availability are

provided with an efficient

rescheduling mechanism

High cost with hardware-based

solution

Shang [26] Dynamic LB with centralized Path of the best link quality is

dynamically selected to meets the

Qos constraint

Optimization strategy results in

much time consumption

Harikesh [27] Dynamic LB with distributed Drop rates are minimized in

homogeneous environments

More suitable for high traffic case of

web servers only

Harshitha [28] Dynamic LB with centralized Effective load distribution while

incurring less overhead

Randomized algorithm may be

improved in advance

Chuang [29] Dynamic LB with distributed Efficient resource management with

LB strategy

Focus on application in small cell

networks

Fortes [30] Dynamic LB with centralized Proposed power traffic sharing

algorithm is proper for mobile

environments

Application is limited to mobile

environments

Lee [31] Static LB with hybrid sticky and

replication

Suitable for environments with

failure rates from low to high

A threshold that affects performance

needs to be predefined manually

Lee [32] Static LB with replication Effective resource utilization with

LB

None prediction for unexpected

crash events is exploited

Sarika [33] Dynamic LB with distributed More data transfer with minimum

response time

Prediction depends on statistics of

seasonal changes may not precise

enough

Tong [34] Dynamic LB with distributed Prediction problem is simplified into

traditional classification

transformation

Numerous data is required for

prediction and classification

methods and vary depend on

different applications

Nagpure [35] Dynamic LB with distributed Efficient LB with future load

prediction

Prediction depends on processor and

memory utilization, may also

consider network connections and

access objects

Jheng [36] Dynamic LB with distributed Fewer data is applied to predict

workloads accurately

Poor and unstable performance in

fluctuant conditions

Proposed SLP Static LB with the proposed SLP Many migrations and crashes are

avoided to improve throughput and

resources utilization with a precise

prediction

Extra predictor is essential for

unexpected crash events predictions

660 Journal of Internet Technology Volume 19 (2018) No.3

3 System Design

3.1 System Architecture

Figure 1 shows the proposed architecture in a large-

scale environment. The incoming requests issued by

clients are directed to a load balancer. In the CWMP

environment, a static LB policy is applied. As a result,

which cluster node should handle the requests is

prearranged. The load balancer then forwards the

requests to the predefined cluster node.

Client 3

Client M

Client 2

Cluster Node N

Client 1

Cluster Node 3

Cluster Node 2

Cluster Node 1

Load Balancer

Self-learning

Predictor

Figure 1. Architecture in a large-scale environment

The proposed SLP is created in the load balancer for

session-based remote management systems to

continually monitor hardware parameters, network

statuses, and crash events to evaluate and predict the

stability of the system in a large-scale environment.

Figure 2 displays the proposed system architecture of

the SLP. The Hardware Performance Monitor is

responsible for monitoring the status of all the servers,

including CPU usage, CPU temperature, memory

usage, storage usage, and other hardware parameters.

The Network Status Monitor monitors the network

connection time, network connection count, and status

of the networks. The Blending Module subsequently

normalizes the output patterns from the above two

components and aggregates the output patterns into a

single blending pattern. Note that the Crash Monitor

monitors all access objects and records the crash

patterns in the Crash Pattern Table. The key

component, the Crash Prediction Module, is in charge

of acquiring the outputs from the Blending Module and

Crash Pattern Table, and then dynamically evaluates

the stability of the system by predicting if the current

pattern will subsequently lead the system into an

unstable state. Finally, depending on the prediction, the

Evaluation Module is invoked to adjust and update the

probability and relation flags of each crash pattern,

which are stored in the Crash Pattern Table.

Crash Pattern

Table

Hardware

Performance

Monitor Blending

Module

SLP

Crash Monitor

Crash

Prediction

Module

Evaluation

Module

Network Status

Monitor

Access Objects

Network Connection Time, Network

Connection Count

CPU Usage, CPU Temperature,

Memory Usage, Storage Usage

Figure 2. System architecture of the proposed SLP

3.2. System Flows

The SLP is divided into the Blending Phase (BP),

Checking Phase (CP), Detecting Phase (DP), and

Estimating Phase (EP). Related notations and their

descriptions are summarized in Table 2 to facilitate the

description of the system flows. The detailed system

flows of the SLP, from Step 1 to Step 10, are illustrated

in Figure 3. Each server has its own fixed-length status

queue. Object access records, CPU usage, CPU

temperature, memory usage, storage usage, network

connection time, and connection count are all stored in

each server status queue.

Table 2. Notations for the proposed SLP

Variable Detailed Descriptions

Ne Pattern counts, including CPU, memory, and

connection.

Qtype Status queue set, including Qcpu, Qmem, and Qconn.

Lq Status queue length

P Pattern set P={Ptype}, including Pcpu, Pmem, and

Pconn.

Lp Pattern length

Rtype Relation flag of each corresponding Ptype

Wtype Weighted value of each corresponding Ptype

s Sub-pattern length, where sub-pattern means the

original pattern has been blended with shorter

length.

d Weighted Manhattan distance

p’ Corresponding sub-pattern in Crash Pattern Table

Pmax Predefined maximum distance used in the

weighted Manhattan distance approach

Prob Probability of each pattern leads the system to

crash

c Number of crash events; initial value c=1

m Number of mispredictions; initial value m=0

a Number of accurate predictions; initial value a=0

α Decreasing factor of Prob

β Increasing factor of Prob

TS Threshold of similarity between objects

SP Safe point in the weighted Manhattan distance

approach

TR Threshold of the distance to identify the

dependence of relationships

1. Acquire patterns from status queue

6. Prediction is

correct?

8. Increase

probability of

the pattern

YES

NO

YES

9. Update

Crash Pattern

Table

2. Blending

Blending

Phase

Checking

Phase

Detecting

Phase

Estimating

Phase

NO

10. Update

relation flags

4. Predict the system

is stable?
5. Migration

3. Evaluate the similarity and the Manhattan distance, and

find a corresponding match pattern

7. Reduce

probability of

the pattern

Figure 3. Flows of the proposed SLP

The first phase of the SLP, the Blending Phase,

acquires patterns from each server’s status queue (Step

1) and aggregates the patterns into a single blending

Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 661

pattern (Step 2). The Blending Phase also builds up the

relation flags for each pattern and records them in the

Crash Pattern Table. The relation flags are

implemented to quickly evaluate the stability of the

system by ignoring unrelated patterns. To have an

efficient and fast evaluation, the BP also extracts the

metrics in the status queue, e.g., CPU usage, memory

usage, and connection count, to form a sub-pattern

with the length of s = Lp / Ne. The content of ith

parameter in sub-patterns of set P, which is defined as

pattern set {Ptype}, is denoted as in Eq. (1). Note that

the objective of Eq. (1) is to extract the original pattern

into a blending pattern with shorter length to save

computing resource. Besides, Qtype(j) indicates each

element j in the status queue set Qtype, including Qcpu,

Qmem, and Qconn.

 [] ()

()1 1
q

q

L
i

s
Ltype type j

j i
q s

s
P i Q

L

+ −

= ×

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (1)

The second phase of the SLP, the Checking Phase,

regularly checks whether the current blending pattern

is similar to an identified crash pattern in the Crash

Pattern Table (Step 3). A weighted Manhattan distance

approach [37] is applied to evaluate the similarity and

find a corresponding one if the similarity is larger than

a predefined threshold TS. For instance, the parameter

of the CPU usage in the current blending pattern only

needs to be compared with the CPU usage in the crash

pattern, and it does not need to be compared with other

parameters in the crash pattern. In addition, for the

Manhattan distance approach, the distance between

two points in a grid based on a strictly horizontal

and/or vertical path, the Manhattan distance is the

simple sum of the horizontal and vertical components.

The Manhattan distance approach is thus a simple and

time-saving comparison approach. Moreover, weighted

values are added to the Manhattan distance approach to

achieve an efficient prediction of the stability of the

system. The weighted value Wtype in the weighted

Manhattan distance approach is represented as in Eq.

(2).

 /type type ieach type i
W R R= ∑ (2)

The expression of weighted Manhattan distance d in

the weighted Manhattan distance approach is defined

as in Eq. (3). Note that p’j is the corresponding sub-

pattern of the original pattern pj in Crash Pattern Table.

Furthermore, a predefined maximum distance Pmax is

used to obtain the Manhattan distance, and the

weighted value of each type wi, which is defined as

Wtype in Eq. (2), is considered to calculate the final

weighted Manhattan distance d of each blending

pattern.

 ()'

max
i

i j jeachtype i each j in p
d w p p p= − −∑ ∑ (3)

If the CP finds a match or a similar pattern, the SLP

subsequently enters the third phase, the Detecting

Phase, to evaluate and predict the stability of the

system (Step 4). If the DP predicts that the current

blending pattern is a crash event, a migration is

triggered (Step 5). The DP then checks whether the

prediction is correct for the EP (Step 6).

Finally, the Estimating Phase updates the probability

and relation flags of each crash pattern in the Crash

Pattern Table according to the predictions. The

probability of each pattern leading to a system crash,

Prob, is defined by heuristic rules as indicated in Eq.

(4). In the design, the increasing and decreasing factors

update slowly in the first several rounds. The factors

subsequently update at an exponential growth rate and

also update slowly in the final saturated state.

 ()
1

Prob ln 1c

e
α

= × + (4)

If the DP made a wrong prediction (Step 7), the EP

updates the variable m as m + 1, which means the

number of mispredictions increases by 1. The

probability Prob is decreased as in Eq. (5).

()

⎟
⎠

⎞
⎜
⎝

⎛
−=

α

e

mln
Prob,0maxProb (5)

On the other hand, if the prediction of the DP is

correct (Step 8), the EP subsequently increases the

variable a to a + 1. The probability Prob is increased

as in Eq. (6).

()

⎟
⎠

⎞
⎜
⎝

⎛
+=

β
e

aln
Prob,1minProb (6)

Finally, the related contents of the Crash Pattern

Table are updated by the EP (Step 9). The relation

flags of these changed patterns are also updated by the

EP (Step 10). After the EP is completed, the system

flow goes back to the BP, and the unexpected crash

events are monitored and predicted by both the CP and

DP.

4 Experimental Results and Discussion

Several experimental simulations were performed to

demonstrate the feasibility of the proposed SLP,

including the prediction precision and the overall

system performance in a large-scale environment. The

parameters used in the proposed experimental

environments to evidence the average precision and

prediction time are explored in Section 4.1. Evaluation

results in terms of memory usage, time consumption,

and connection failure are shown in Section 4.2 to

verify the performance of the proposed SLP combines

with a static LB policy.

662 Journal of Internet Technology Volume 19 (2018) No.3

4.1 Evaluation of the Prediction Precision

To depict the feasibility of the SLP, the test strategy

is to verify the prediction precision of the SLP with

various conditions and situations, e.g., with

considering different memory requirements and

different numbers of execution loops. Therefore, the

experiments in this study are verified with two

different tasks using the CWMP protocol. The first task,

Type A, has a low memory requirement (20 to 40 MB

with normal distribution). The other task, Type B, has

a high memory requirement (80 to 110 MB with

inverse normal distribution). Note that the tails of the

inverse normal distribution decrease more slowly than

the normal distribution, and are thus more suitable to

model numerically large values. In addition, the

number of tasks for Type A and Type B is set to 1,200.

Table 3 summarizes the experimental setup values of

the variables for the proposed SLP.

Table 3. Experimental setup values of the variables for

the proposed SLP

Variable Experimental Setup Value

Lq 100

s 3

α 4

β 2

Prob 0.8

Lp 5

TS 40

SP 30

Pmax 100

TR 10

In the CWMP implementation, the execution period

of the remote procedure call (RPC) is set as 60 seconds.

Moreover, 30 specific rules are predefined to denote

the crash events. For instance, when the access object

ID 99 under the CPU usage is more than 90% and the

memory usage is greater than 80%, the system

subsequently crashes. An additional example of the

crash rule is when access to object ID 55 behind object

ID 90 under the capacity of the network connection is

greater than 95%. In the simulation, all variables

including object access records, CPU usage, CPU

temperature, memory usage, storage usage, network

connection time, and connection count are generated

randomly. When the generated pattern matches the

predefined rules, the pattern is identified as a crash

event that leads to a system crash. As the crash rules

are predefined, all crash events belong to the specific

types of patterns. This means the same types of crash

events occur repetitively. As a result, the repeatability

feature of unexpected crash events is simulated. The

test bed of the ACS server was equipped with Intel

Core i7 920 2.66 GHz, DDR3-2133 8 GB, Windows 7

Professional 64-bits, and JavaSE-1.7 environment. All

the experimental results were simulated more than 500

times to demonstrate the feasibility of the SLP.

Average precision. Two cases with 20 rounds,

including different memory requirements and different

numbers of execution loops, were simulated. Note that

the definition of each execution loop indicates that the

ACS completes all tasks requested by the CPEs. In the

case of different memory requirements, the memory

requirement of Type B is set between 80 and 110 MB

deliberately, and the number of execution loops is set

from 1,000 to 11,000 times. As indicated in Figure 4,

the SLP spends a period of time collecting crash

patterns and recording them in the Crash Pattern Table.

During this time, there are few crash patterns in the

Crash Pattern Table to be compared. Few predictions

are made, and the true prediction (precision) in the first

round is 71.4%. Specifically, the definition of precision

is the SLP correctly predicting the crash events over all

predictions, including true predictions and false

predictions. Nevertheless, it indicates that the SLP

prediction has a high hit rate in the initial state. After

the second round, the precision is up to 90.5%, which

indicates that the SLP prediction is both efficient and

precise. Additionally, the average precision is greater

than 93% after 5 rounds. The precision thus becomes

steady after only a few rounds because there tends to

be specific types of unexpected crash events, and the

self-learning mechanism does an efficient and precise

prediction in the following rounds.

0

100

200

300

400

500

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Accurate Prediction Counts Misprediction Counts Precision Ratio

Round (times)

P
re

c
is

io
n

 (
%

)

C
o

u
n

ts
 (

ti
m

e
s
)

Figure 4. Round times vs. average precision given

different memory requirements

In the other case, different numbers of execution

loops are considered. The number of execution loops

of Type A is set between 8,000 and 11,000 times

deliberately, and the memory requirement is set

between 20 and 40 MB. As indicated in Figure 5, the

results demonstrate that the precision values in the first

and the second rounds are 74.2% and 92.5%,

respectively. It also proves the high hit rate for the SLP

to predict crash events. Few predictions are in the first

round because only several crash patterns in the Crash

Pattern Table are compared for the SLP. After 5 rounds,

the average precision is up to 93%. This also indicates

that the precision becomes steady after only a few

rounds because of the repeatability feature of

Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 663

unexpected crash events. One may readily observe that

the self-learning mechanism makes effective and

precise predictions for the CWMP network.

0

100

200

300

400

500

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Accurate Predictions Counts Mispredictions Counts Precision Ratio

P
re

c
is

io
n

 (
%

)

C
o

u
n

ts
 (

ti
m

e
s
)

Round (times)

Figure 5. Round times vs. average precision given

different numbers of execution loops

Average prediction time. Table 4 represents two

simulated cases of the average prediction time within 5

rounds using the CWMP as an example. These two

cases include the crash case and the non-crash case. As

indicated by the experimental results, the first round in

the crash case takes the most time, approximately 0.34

ms, because the SLP spends a considerable amount of

time recording all crash events in the Crash Pattern

Table. However, the prediction time of the other

rounds are all under 0.16 ms, and the average

prediction time is 0.1 ms. As the execution period of

the RPC is set to 60 seconds, the average prediction

time is thus less than 0.00056% of the execution period

even in the case of the largest required time (0.34 ms).

Consequently, the results indicate that the proposed

SLP is a precise and time-saving prediction mechanism.

Table 4. Average prediction time in different cases

within 5 rounds

Average Prediction

Time: Crash Case

(msec.)

Average Prediction

Time: Non-Crash Case

(msec.)

Round 1 0.333436 0.009727

Round 2 0.141699 0.011907

Round 3 0.153717 0.011812

Round 4 0.154657 0.016890

Round 5 0.155137 0.009998

4.2 Evaluation of the Overall System

Performance

The main objective of a LB used in a large-scale

environment is to maximize the resource usage and

system throughput. Hence, the test strategy to verify

the overall system performance is to compare the

resource utilization (e.g., memory usage) and the

throughput (e.g., the execution time while handling the

same number of tasks or sessions) among various LB

mechanisms. On the other hand, to evaluate the system

performance when used with the proposed SLP, a

simple static LB, i.e., a sticky session management is

applied to combine with the SLP. In the sticky session

management, once a session is established, it is sent to

one of the cluster servers based on a decision made by

the load balancer. Then, all subsequent requests in this

session are directed to the same server. The major

advantage of this technique is that the memory space is

well utilized. Conversely, once a session is established

in the session replication, it is replicated to all cluster

servers. The major advantage of this technique is its

rapid recovery from unexpected crash events (e.g., due

to network failure or a down server).

Six different techniques are compared in the

experiments, including the proposed SLP combines

with a sticky session, the sticky session, the session

replication, the primary-secondary (PS) session

replication in J2EE session management [38], a hybrid

technique [31], and a dynamic distribution (DD)

technique [32]. Note that the PS scheme always

duplicates sessions to only one or two cluster nodes,

whereas the hybrid technique duplicates sessions to all

servers once the connection failure rate reaches a

predefined threshold, and it adopts the sticky session if

the failure rate is low. The number of cluster nodes to

be replicated in the DD technique depends on the

network situation and the connection failure rates.

As mentioned in a session admission control

mechanism in a previous work [39], a high connection

failure rate results from the situations when clients are

unable to get the responses from a server (e.g., because

of unstable wireless links or overloaded servers).

Therefore, a wide range of high connection failure rate

that leads the system to crash, up to 10%, is used to

simulate the target environment. The simulations are

continuously performed as the crash rate grows from

1% to 10%. An environment including diverse clients

with wired or wireless connections is simulated to

depict a wide range of crash rates by developing

software programs. Specifically, in the target

environment, the connections among servers in a

cluster node are generally wired links whereas clients

may connect to a server cluster with either wired or

wireless links. Additionally, according to a previous

report [40], most resources are occupied by resource-

intensive tasks that have long durations. The memory

demands of a memory-intensive task could be greater

than 1 gigabyte. Hence, redundant memory usage

should be reduced for session management, especially

in a large-scale environment and considering the

overall system performance. Consequently, the

experimental environments are set as shown in Table 5.

664 Journal of Internet Technology Volume 19 (2018) No.3

Table 5. Parameters used in the simulation of overall

system performance evaluation

Parameter Value

Number of clients 10,000

Number of cluster nodes 5-10

Number of sessions 1,000,000

Crash rate 1%-10%

In the simulation, the network architecture of

simulations is illustrated as shown in Figure 1. In

addition, an Exponential distribution is applied to

create the time consumption of the session operations,

such as the time of session connection, session creation,

and session replication. The mean of the Exponential

distribution is set at 100 ms for both the connection

time and session replication. For the session creation

time, the mean of the Exponential distribution is 1,000

ms. Similarly, in the memory usage simulation, the

consumption of memory space of each session is

generated by Gaussian distribution with an average of

200 bytes and a standard deviation of 50 bytes. Note

that the self-learning mechanism in the SLP is

continuously adopted to learn and predict unexpected

crash events as the crash rate increases from 1% to

10%. This means the predicted results in previous

simulations are also applied to predict unexpected

crash events in the next simulation.

Memory usage. Figure 6 and Figure 7 show the

comparison of total memory usage of all cluster nodes

with server counts of 5 and 10, respectively. The data

in these two figures show that the memory usage of the

session replication remains constant as the crash rate

increases from 1% to 10% because session replication

always sends a session to all cluster nodes. On the

other hand, the memory usage of the sticky session and

the PS are proportional to the crash rate because when

any session disconnection occurs, the system has to

rebuild the session, which occupies more memory

space. For the hybrid session management, the memory

usage is near that of the sticky session for the case in

which the crash rate is low. However, the memory

usage of the hybrid and the DD techniques grow

dramatically as the crash rate increases because once

the crash rate increases, session replication is applied

to all new sessions.

As shown in Figure 6 and Figure 7, the memory

usage of the session replication, the sticky session, the

hybrid, and the DD techniques greatly increase as the

number of servers in each cluster node increases from

5 to 10 servers. Conversely, the memory usage of the

SLP only slightly increases. Moreover, the memory

usage of the SLP is comparable similar to that of the

PS scheme, which is the best one among these six

techniques. This is because the PS scheme always

duplicates sessions to only one or two server nodes, so

that less memory usage is required.

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

M
e
m

o
ry

 U
sa

g
e
 (
M

B
y
te

s)

Figure 6. Comparison of memory usage with the

cluster node of 5 servers

10

30

50

70

90

110

130

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

M
e
m

o
ry

 U
sa

g
e
 (
M

B
y
te

s)

Figure 7. Comparison of memory usage with the

cluster node of 10 servers

Time consumption. The comparisons of time

consumption in a server cluster of 5 servers and 10

servers are demonstrated in Figure 8 and Figure 9,

respectively. The results in these two figures show that

the time consumption of the sticky session and PS

scheme increase dramatically when the crash rate is

greater than 3%. However, the time consumption of

using the SLP is significantly lower than that of the

sticky session and that of the PS scheme. In addition,

the time consumption of the session replication is

slightly greater than that of both the DD and the SLP

because the session replication replicates sessions to all

cluster nodes, which leads to fewer crash events.

Specifically, the time consumption of the SLP is

close to that of the session replication, which is the

superior one among all techniques. The main reason is

that sessions are replicated to all cluster nodes in the

session replication which results in fewer crash events,

so that a better performance is obtained.

Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 665

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

T
im

e
 C

o
n

su
m

p
ti

o
n

 (
1

0
6
se

c
.)

Figure 8. Comparison of time consumption with the

cluster node of 5 servers

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

T
im

e
 C

o
n

su
m

p
ti

o
n

 (
1

0
6
se

c
.)

Figure 9. Comparison of time consumption with the

cluster node of 10 servers

Memory time product. The evaluation measure,

memory time product (MTP) is applied to provide a

general performance evaluation of these techniques.

MTP is the memory usage times the time consumption.

Thus, a lower MTP indicates a better performance.

Figure 10 and Figure 11 depict the MTPs of the SLP,

the DD, the sticky session, the session replication, the

PS scheme, and the hybrid technique. The results in

Figure 10 and Figure 11 confirm that the static LB

policy combined with the SLP has the best MTP than

the other five techniques. Moreover, in Figure 10, the

MTP of the SLP is slightly better than that of the DD.

Nevertheless, as the number of servers in each cluster

node increases from 5 to 10, the performance of the

SLP is much better than that of the DD and the other

techniques, as shown in Figure 11. As a result, the

comparison of the MTPs shows that the SLP has the

lowest MTP, meaning that the SLP generally

outperforms the other techniques, especially as the

number of servers in each cluster node increases.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

M
T

P
 (
1

0
6

M
B

y
te

s
x
 s

e
c
.)

Figure 10. Comparison of MTP with the cluster node

of 5 servers

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

M
T

P
 (
1

0
6

M
B

y
te

s
x
 s

e
c
.)

Figure 11. Comparison of MTP with the cluster node

of 10 servers

Connection failure. Figure 12 depicts the comparison

of the number of actual connection failures. The

experiments were executed on a system with 10 servers

in each cluster node. As shown in Figure 12, the failure

count of the sticky session grows dramatically when

the crash rate is higher than 2.8%. Once a crash occurs,

the system repeatedly re-connects and re-sends until

the communication is completed. A higher crash rate

thus leads to frequent failures. Compared with the

sticky session, the actual failure count of the SLP is

much lower than that of the sticky session because a

large number of crash events are predicted precisely

with the self-learning mechanism in the SLP.

Moreover, the actual connection failure count of the PS

scheme is much higher than that of the SLP. The actual

connection failure count when using the SLP is slightly

greater than that when using the session replication.

This finding indicates that the session replication

technique outperforms the SLP in merely reducing

limited crash failures, but at the cost of much higher

memory consumption. In summary, the SLP eliminates

most migrations that are caused by unexpected crash

events with less memory usage because of highly

precise predictions.

666 Journal of Internet Technology Volume 19 (2018) No.3

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

PS

Sticky

Replication

Hybrid

DD

SLP

Crash Rate (%)

F
a

il
u

re
 C

o
n

n
e
c
ti

o
n

 (
x
1

0
3
)

Figure 12. Comparison of actual connection failure

5 Conclusions

Unlike many LB policies developed for general

applications, the predictability of metrics in a session-

based remote management system have been

additionally exploited, e.g., the CWMP. Furthermore,

unexpected crash events are the key factors affecting

the system performance of a session-based remote

management system in large-scale environments.

Given that crash events may occur repetitively, a self-

learning predictor named SLP is proposed in this work.

To verify its feasibility, the SLP that combines with a

sticky session has been applied to the CWMP in a

large-scale environment. From the experimental

studies, the prediction of the SLP achieves a high hit

rate (over 71%) in the initial state, and the precision

becomes steady with a very high hit rate (over 93%)

after only a few rounds (within 5 rounds). The average

prediction time is equal to 0.1 ms, which is less than

0.00056% of the execution period, even in the case of

the largest required time (0.34 ms). Moreover, the

MTP experimental results show a static LB combined

with the proposed SLP is more effective in terms of

resources utilization and throughput, i.e., has a more

efficient performance in terms of memory usages and

the execution time while handling a large number of

sessions. Consequently, with the proposed SLP, a

session-based remote management system can achieve

a better system performance in a large-scale

environment, especially as the number of servers in

each cluster node increases.

Acknowledgements

The authors would like to acknowledge Kuo-Ming

Huang, Jin-Neng Wu, and Ping-Yu Chen in Industrial

Technology Research Institute (ITRI) for their valuable

discussions. Additionally, this work was supported in

part by the Headquarters of University Advancement at

the National Cheng Kung University, which is

sponsored by the Ministry of Education, Taiwan.

References

[1] A. Sharma, S. Verma, A Survey Report on Load Balancing

Algorithm in Grid Computing Environment, International

Journal of Advanced Engineering Research and Studies, Vol.

4, No. 2, pp. 128-132, January-March, 2015.

[2] S. Pandey, S. Prasanna, S. Kapil, R. B. S., Load Balancing

Techniques: A Comprehensive Study, International Journal

of Advanced Research in Computer Science and Management

Studies, Vol. 3, No. 4, pp. 331-335, April, 2015.

[3] M. Li, H.-H. Yang, CEA: A Cyclic Expansion Algorithm for

Data Migration in Parallel Video Servers, Journal of Parallel

and Distributed Computing, Vol. 72, No. 7, pp. 868-879, July,

2012.

[4] A. Mishra, Network Load Balancing and Its Performance

Measures, International Journal of Computer Science Trends

and Technology, Vol. 3, No. 1, pp. 77-81, January-February,

2015.

[5] C.-Y. Chang, T.-Y. Wu, C.-C. Huang, A. J.-W. Whang, H.-C.

Chao, Robust Header Compression with Load Balance and

Dynamic Bandwidth Aggregation Capabilities in WLAN,

Journal of Internet Technology, Vol. 8, No. 3, pp. 365-372,

July, 2007.

[6] S. C. Deshmukh, S. S. Deshmukh, A Survey: Load Balancing

for Distributed File System, International Journal of

Computer Applications, Vol. 111, No. 5, pp. 25-29, February,

2015.

[7] H.-T. Chang, Y.-M. Chang, S.-Y. Hsiao, Scalable Network

File Systems with Load Balancing and Fault Tolerance for

Web Services, Journal of Systems and Software, Vol. 93, pp.

102-109, July, 2014.

[8] N. Grozev, R. Buyya, Performance Modelling and Simulation

of Three-Tier Applications in Cloud and Multi-Cloud

Environments, The Computer Journal, Vol. 58, No. 1, pp. 1-

22, January, 2015.

[9] P. D. Kaur, I. Chana, A Resource Elasticity Framework for

QoS-aware Execution of Cloud Applications, Future

Generation Computer Systems, Vol. 37, pp. 14-25, July, 2014.

[10] H. Sun, T. Zhao, Y. Tang, X. Liu, A QoS-Aware Load

Balancing Policy in Multi-tenancy Environment, Proceedings

of the 8th International Symposium on Service Oriented

System Engineering, Oxford, England, 2014, pp. 140-147.

[11] M. Beltrán, Automatic Provisioning of Multi-tier

Applications in Cloud Computing Environments, The Journal

of Supercomputing, Vol. 71, No. 6, pp. 2221-2250, June,

2015.

[12] H. J. Moon, H. Hacıgümüş, Y. Chi, W.-P. Hsiung, SWAT: A

Lightweight Load Balancing Method for Multitenant

Databases, Proceedings of the International Conference on

Extending Database Technology, Genoa, Italy, 2013, pp. 65-

76.

[13] C.-C. Li and K. Wang, An SLA-aware Load Balancing

Scheme for Cloud Datacenters, Proceedings of the

International Conference on Information Networking, Phuket,

Thailand, 2014, pp. 58-63.

Exploiting a Self-learning Predictor for Session-based Remote Management Systems in a Large-scale Environment 667

[14] I. Kamel, Z. A. Aghbari, A. Mustafa, Efficient Range

Queries in Spatial Databases over Peer-to-Peer Networks,

International Journal of Internet Protocol Technology, Vol. 4,

No. 2, pp. 79-90, July, 2009.

[15] Y.-S. Chen, T.-Y. Juang, Y.-W. Lin, I.-C. Tsai, A Low

Propagation Delay Multi-path Routing Protocol for

Underwater Sensor Networks, Journal of Internet Technology,

Vol. 11, No. 2, pp. 153-165, March, 2010.

[16] N.-C. Wang, S.-C. Chang, A Load Balancing Data

Aggregation Scheme for Grid-based Wireless Sensor

Networks, International Journal of Ad Hoc and Ubiquitous

Computing, Vol. 14, No. 4, pp. 279-287, January, 2013.

[17] N. Jain, D. K. Madathil, D. P. Agrawal, MidHopRoute: A

Multiple Path Routing Framework for Load Balancing with

Service Differentiation in Wireless Sensor Networks,

International Journal of Ad Hoc and Ubiquitous Computing,

Vol. 1, No. 4, pp. 210-221, July, 2006.

[18] H. Zafar, D. Harle, I. Andonovic, Y. Khawaja, Performance

Evaluation of Shortest Multipath Source Routing Scheme,

IET Communications, Vol. 3, No. 5, pp. 700-713, May, 2009.

[19] A. Jaron, P. Pangalos, A. Mihailovic, A. H. Aghvami,

Proactive Autonomic Load Uniformisation with Mobility

Management for Wireless Internet Protocol (IP) Access

Networks, IET Networks, Vol. 1, No. 4, pp. 229-238,

December, 2012.

[20] M. Patel, C. Jani, A Survey on Heterogeneous Load

Balancing Techniques in Cloud Computing, International

Journal for Innovative Research in Science & Technology,

Vol. 1, No. 10, pp. 180-185, March, 2015.

[21] R. Kanakala, V. K. Reddy, Performance Analysis of Load

Balancing Techniques in Cloud Computing Environment,

Indonesian Journal of Electrical Engineering, Vol. 13, No. 3,

pp. 568-573, March, 2015.

[22] A. A. Jaiswal, S. Jain, An Approach towards the Dynamic

Load Management Techniques in Cloud Computing

Environment, Proceedings of the International Conference on

Power, Automation and Communication, Amravati, India,

2014, pp. 112-122.

[23] Broadband Forum, CPE WAN Management Protocol

Amendment 5 Specification, TR-069, November, 2013.

[24] M. Janbeglou, H. Naderi, N. Brownlee, Effectiveness of

DNS-based Security Approaches in Large-scale Networks,

Proceedings of the 28th International Conference on

Advanced Information Networking and Applications

Workshops, Victoria, Canada, 2014, pp. 524-529.

[25] S. Li, F. Wang, B. Xiao, F. Yang, X. Sun, Y. Wang, Study of

Load Balancing Technology for EAST Data Management,

Fusion Engineering and Design, Vol. 89, No. 5, pp. 750-753,

May, 2014.

[26] F. Shang, L. Mao, W. Gong, Service-aware Adaptive Link

Load Balancing Mechanism for software-Defined Networking,

Future Generation Computer Systems, Vol. 81, pp. 452-464,

April, 2008.

[27] H. Singh, S. Kumar, WSQ: Web Server Queueing Algorithm

for Dynamic Load Balancing, Wireless Personal

Communications, Vol. 80, No. 1, pp. 229-245, January, 2015.

[28] H. Menon, L. Kalé, A Distributed Dynamic Load Balancer

for Iterative Applications, Proceedings of the International

Conference on High Performance Computing, Networking,

Storage and Analysis, Denver, CO, 2013, pp. 1-11.

[29] M.-C. Chuang, M. C. Chen, Y. S. Sun, Resource Management

Issues in 5G Ultra Dense Smallcell Networks, Proceedings of

the International Conference on Information Networking,

Siem Reap, Cambodia, 2015, pp. 159-164.

[30] S. Fortes, A. Aguilar-García, R. Barco, F. B. Barba, J. A.

Fernández-luque, A. Fernández-Durán, Management

Architecture for Location-aware Self-organizing LTE/LTE-a

small Cell Networks, IEEE Communications Magazine, Vol.

53, No. 1, pp. 294-302, January, 2015.

[31] K.-M. Lee, J.-N. Wu, P.-Y. Chen, Y.-C. Chao, Remote

Management System with Adaptive Session Management

Mechanism, U.S. Patent 8938495, January, 2015.

[32] K.-M. Lee, W.-G. Teng, J.-N. Wu, P.-Y. Chen, M.-K. Huang,

T.-W. Hou, Dynamic Distribution Technique for Session

Management in CWMP Server Clusters, Electronics Letters,

Vol. 50, No. 22, pp. 1639-1641, October, 2014.

[33] S. V. Bodake, R. Naik, Design of Decentralized Load

Balancing Algorithm for Cloud Environment, International

Advanced Research Journal in Science, Engineering and

Technology, Vol. 2, No. 5, pp. 19-24, May, 2015.

[34] J.-J. Tong, H.-H. E, M.-N. Song, J.-D. Song, Host Load

Prediction in Cloud Based on Classification Methods, The

Journal of China Universities of Posts and

Telecommunications, Vol. 21, No. 4, pp. 40-46, August, 2014.

[35] M. B. Nagpure, P. Dahiwale, P. Marbate, An Efficient

Dynamic Resource Allocation Strategy for VM Environment

in Cloud, Proceedings of the International Conference on

Pervasive Computing, Pune, India, 2015, pp. 1-5.

[36] J.-J. Jheng, F.-H. Tseng, H.-C. Chao, L.-D. Chou, A Novel

VM Workload Prediction Using Grey Forecasting Model in

Cloud Data Center, Proceedings of the International

Conference on Information Networking, Phuket, Thailand,

2014, pp. 40-45.

[37] H. Ding, H. Wu, X. Zhang, J. Chen, Writer Identification

Based on Local Contour Distribution Feature, International

Journal of Signal Processing, Image Processing and Pattern

Recognition, Vol. 7, No. 1, pp. 169-180, February, 2014.

[38] D. Rossi, E. Turrini, Analyzing the Impact of Components

Replication in High Available J2EE Clusters, Proceedings of

the Joint International Conference on Autonomic and

Autonomous Systems and International Conference on

Networking and Services, Papeete, Tahiti, 2005, pp. 56-66.

[39] L. Cherkasova, P. Phaal, Session-based Admission Control: A

Mechanism for Peak Load Management of Commercial Web

Sites, IEEE Transactions on Computers, Vol. 51, No. 6, pp.

669-685, June, 2002.

[40] A. K. Mishra, J. L. Hellerstein, W. Cirne, C. R. Das, Towards

Characterizing Cloud Backend Workloads: Insights from

Google Compute Clusters, ACM SIGMETRICS Performance

Evaluation Review, Vol. 37, No. 4, pp. 34-41, March, 2010.

668 Journal of Internet Technology Volume 19 (2018) No.3

Biographies

Kuen-Min Lee received a M.S.

degree in the Department of Electrical

Engineering, National Chung Cheng

University, Chiayi, Taiwan in 1999,

and received a Ph.D. degree in the

Department of Engineering Science,

National Cheng Kung University,

Tainan, Taiwan in 2016. His research interests include

home networking and cloud distributed systems.

Wei-Guang Teng received B.S. and

Ph.D. degrees in the Department of

Electrical Engineering, National

Taiwan University, Taipei, Taiwan in

1998 and 2004, respectively. He is

currently an associate professor in the

Department of Engineering Science,

National Cheng Kung University, Tainan, Taiwan. His

research interests include data mining and multimedia

networking.

Mu-Kai Huang received a M.S.

degree in the Department of

Electronic Engineering, National

Taiwan University of Science and

Technology, Taipei, Taiwan in 2011.

He is an engineer at the Information

and Communications Research Laboratories, Industrial

Technology Research Institute (ITRI), Tainan, Taiwan.

His research interests include remote management and

distributed systems.

Chih-Pin Freg received his M.S.

degree in Computer Engineering from

the University of Missouri at

Columbia in 1990. He is currently

teaching at the Fortune Institute of

Technology. His major research

interests include pattern recognition and mobile

applications.

Ting-Wei Hou received B.S., M.S.,

and Ph.D. degrees in EE, National

Cheng Kung University (NCKU)

Tainan, Taiwan in 1983, 1985, and

1990. He joined Department of

Engineering Science, NCKU, in 1990.

He is now a professor and head of the

department. His research interests include medical

information systems and robots.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

