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Abstract 

The efficacy of current path planning methods in 

anintelligent navigation system is compromised by poor 

self-adaptability and large errors in Big Data 

environments, because they only consider the original 

data in a road map and lack a comprehensive analysis of 

actual road conditions. In this paper, we report the details 

of research on the above problem. We defined the traffic 

transit coefficient (TTC) and traffic time-consuming 

index (TTCI), and then deduced formulas of for both. 

Based on the formulas, we designed a minimum time-

consuming path planning method and desinated it the 

ETC (where E represents the Elman neural network, T 

the traffic transit coefficient, and C the traffic time-

consuming index) path planning method. First, this 

method predicted the traffic flow on a road using the 

Elman neural network model. The TTCI of each section 

of the future unit time was calculated using the TTC. 

Finally, we used the Dijkstra algorithm to obtain the 

shortest path. Experiments and theoretical analysis 

showed that the ETC path planning method can adjust the 

parameters according to different road conditions. The 

method has high adaptability, high precision, and less 

time consumption. It has broad application prospects 

compared to the ordinary path planning algorithm in a 

Big Data environment. 

Keywords: Vehicle navigation, Elman neural network, 

Traffic transit coefficient, Traffic time 

consuming index, Path planning 

1 Introduction 

With the rapid development of human society, 

increasingly more people use private vehicles, which 

has made urban traffic congestion an increasingly 

serious problem [1]. At present, the vehicle navigation 

system developed by Garmin Ltd. (Olathe, KS, USA) 

and Beijing UniStrong Science & Technology Co., Ltd. 

(Beijing, China), the navigator developed by Beijing 

Newman Ideal Digital Technology Co., Ltd. (Beijing, 

China), and some other systems already have the 

ability to conduct path planning [2]. However, most of 

them make navigation decisions for the user based on 

the principle of the shortest path and the minimum 

charge, which causes more vehicles to be on these 

paths, leading to even heavier traffic and more wasted 

time for users. Moreover, these methods perform 

poorly in terms of adaptability and accuracy. At 

present, since vehicle path planning [3] plays an 

increasingly important role in daily life, vehicle users 

need a more intelligent navigation system that can 

obtain the short-est time-consuming path to save travel 

time. Path planning has developed greatly in the field 

of transportation and communication [4-5]. 

Many scholars have carried out research on vehicle 

path planning methods. For example, Han et al. [6] 

proposed a reasonable path planning method for 

vehicles based on behavior coordination of particle 

swarm, which used the behavior dynamics model and 

particle swarm optimization algorithms to solve these 

problems for the optimization of behavior coordination 

parameters and to achieve vehicle navigation. It is able 

to achieve accurate vehicle path planning and 

navigation, but it cannot realize the identification and 

avoidance of road congestion. Some research teams 

proposed some optimal path planning algorithms for 

vehicle navigation systems, and implemented motion 

planning techniques. In these algorithms the available 

information, different motion planning and control 

techniques have been implemented to autonomously 

driving on complex environments. These algorithms 

can improve the timeliness of the shortest path 

algorithm effectively and, at the same time, make the 

executing strategies achieve maximum comfort, safety 

and energy savings. However, there still are problems 

that dynamic planning cannot properly solve at times, 

and the long time consumed during the process of 

driving a vehicle may lead to errors in urban dynamic 

environments [7]. Yu and Lu [8] proposed a genetic 

algorithm for multi-mode path planning that can be 

used for personalized path navigation. Researchers 

have also put forward numerous algorithms. The 
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Dijkstra algorithm, which can find the shortest path to 

a node quickly, was proposed in Ref. [9], but its 

solution process is slow when there are too many nodes 

in the network, and it cannot be applied to a section of 

road with changing terrain. In 1983, Kirkpatrick, Gelatt, 

and Vecchi proposed the simulated annealing (SA) 

algorithm [10-12], imitating the material annealing 

process for road planning, which has the advantage of 

high efficiency, simplicity, and flexibility. However, it 

is not suitable for changing road environments due to 

low initial conditions. The fuzzy logic algorithm [13] 

can simulate the driving experience of the driver and 

add it into the path planning, so that the algorithm has 

high humanization. Once the fuzzy rule is established, 

however, it is difficult to adjust online, and it has poor 

resiliency and poor urgency-dealing capability. The 

grid method [14] employs search paths based on a 

barrier grid and a free grid to represent the map; the 

drawback of this method is that it is unable to handle 

cases in which the road environment is complex. In 

addition to the four typical algorithms described above, 

the generally used path planning algorithms also 

include the A* algorithm [15], the Ford algorithm [16], 

the augmented path algorithm [17], the queue 

optimization algorithm [18], etc. 

In this paper, we propose an algorithm based on 

numerous factors, such as road condition and grade, 

vehicle type, and lane number. Unlike the other 

algorithms, which lack real-time adaptability, the 

proposed algorithm can predict traffic congestion 

based on the traffic flow data in a Big Data 

environment and can execute path planning based on 

the predicted traffic congestion. It mainly consists of a 

traffic flow prediction algorithm, a shortest path 

planning algorithm, and a traffic jam detection and 

traffic transit coefficient calculation model. This 

method can reduce the impact of transportation on the 

environment, gather vehicle trajectories of 

transportation, analyze the direction of transport 

vehicles, and provide convenient routes. Moreover, it 

can prevent traffic jams, divide vehicle flows to reduce 

traffic congestion, and provide eco-transportation plans 

for traffic managers. In addition, this method reduces 

pollutants and lowers the carbon dioxide emission level 

to the best extent possible, controls noise pollution 

effectively, and promotes the construction of green, 

low-carbon transportation modes. 

2 ETC Path Planning Method Structure 

The structure of the intelligent vehicle navigation 

system proposed in this paper is shown in Figure 1 (we 

designate the method used in this system ETC, where 

E represents the Elman neural network, T the traffic 

transit coefficient, and C the traffic time-consuming 

index). 

 

Figure 1. System structure diagram 

3 Traffic Flow Prediction Based On 

Elman Neural Networks 

In recent years, many traffic flow prediction 

algorithms have been proposed that can be roughly 

divided into two categories according to their 

forecasting basis: One prediction model is based on 

mathematical statistics and traditional mathematics 

such as calculus [19]; the other is developed by means 

mainly related to modern science, technology, and 

methods [20]. One of the representative results of the 

first category is Ahmed and Cook's first time-series 

model [21] in the traffic flow prediction field in 1979, 

which includes the autoregressive model (AR) [22], the 

moving average model (MA) [23], and the 

autoregressive moving average model (ARMA) [24-

25], among others. The technology is mature and has 

high accuracy when the sample data are sufficient, and 

it needs to be used in relatively stable traffic because it 

has high requirements for data and needs a large 

amount of uninterrupted data. One of the representative 

traffic flow prediction algorithms in the second 

category is Davis and Nihan's nonparametric regressive 

model [26], which was applied to traffic flow 

prediction in 1991. Without prior knowledge, it can 

perform more accurately than parametric models with 

only sufficient historical data, but its complexity is 

very high. Dougherty proposed a neural network [27-

28] for traffic flow prediction in 1995, which is 

suitable for complex and nonlinear conditions; it is also 

effective when the data is incomplete and inaccurate, 

but it requires a significant amount of learning data and 

the training process is complex. In addition, plenty of 

traffic flow forecasting methods based on the above 

methods, e.g., deep belief network models [29-30], 

support vector machines [31-34], Dynamic Multi-

keyword Ranked Search Cloud Scheme [35], and 

wavelet neural network models [36-37], have been 

proposed in recent years. 

Focusing on the nonlinear and nonstationary 

characteristics of traffic flow, this paper proposes an 

algorithm that uses the local recursive inner delay 

feedback neural network [38-39]. Compared to the 
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traditional Back Propagation (BP) neural network [40-

41], the algorithm strengths the feedback signal. The 

network structure includes the input layer, the hidden 

layer, the output layer, and the receiver layer. Among 

these layers, the added receiver layer can be seen as a 

step delay, and can be used to store the output value of 

the hidden layer unit of previous time. If the input time 

series is a(t), the output of the feedback layer is yc(t), 

and the output of the network is y(t), then the network 

can be described as 

 

1 2

3

x( ) ( ( ) ( 1)),

( ) ( 1) ( 1),

( ) ( ( ))

c

c c

k f w x k w u k

x k x k x k

y k g w x k

α

= + −

= − + −

=

 (1) 

In the above equation, k represents the time scale, x 

the one-dimensional output node vector, y the n-

dimensional input vector, u the n-dimensional input 

vector, xc the m-dimensional feedback state vector, w1 

the connection weight matrix of the receiver layer to 

the hidden layer, w2 the connection weight matrix of 

the input layer to the hidden layer, and w3 the 

connection weight matrix of the hidden layer to the 

output layer. If the actual output of the system at step k 

is yd(k), then the objective function (the error function) 

of the Elman neural network can be expressed as 
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2
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d d
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The Elman neural network learning algorithm is 

based on the gradient descent method, which calculates 

the partial derivative of the weight and the update 

weight to let the partial derivative get close to zero. 

Accordingly, the following is obtained: 
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1
η , 

2
η , and 

3
η  represent the learning steps of w1, w2, 

and w3, respectively. 

As shown in the network structure diagram 

presented in Figure 2, in the Elman neural network, the 

data are input through the input layer and linearly 

weighted by the output layer. The transfer function in 

the hidden layer unit can be either a linear function or a 

nonlinear function, and the main function of the 

receiver layer is to store the output memory of the 

hidden layer and pass it to the input layer. An Elman 

neural network possesses the function of short-term 

memory for the data, so it can reflect the trend of 

historical data to a certain extent. It also has the 

advantages of fast computation speed and real-time 

performance, compared to a traditional neural network. 

Therefore, it is suitable to apply to an intelligent 

navigation system. 

 

Figure 2. Elman neural network structure diagram 

4 Traffic Transit Coefficient and Traffic 

Time-Consuming Index 

Traffic flow is not only composed of drivers and 

vehicles, but the overall driving environment. 

Therefore, both the internal and external factors should 

be considered to increase the accuracy of prediction 

when predicting traffic flow. In this paper, we propose 

the concept of a traffic transit coefficient and introduce 

its calculation method, and then, based on this, we 

obtain the method for calculating the traffic time-

consuming index. These components comprise a good 

foundation for final path planning. 

4.1 Traffic Transit Coefficient 

There are many traffic condition detection methods, 

including that which determines the traffic situation by 

calculating the number of vehicles in a certain area; for 

example, by detecting vehicles automatically and 

counting their number through the background 

subtraction method or its improved algorithm [42], 

virtual line analysis [43], the entropy weight method 

[44], etc. In addition, there are numerous methods of 

determining the road and traffic conditions by using 

various traffic indexes, such as speed, traffic density, 

and other factors. Chen et al. [45] determined the 

degree of traffic by using the virtual line analysis 

method. They built a model to calculate the maximum 
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traffic capacity of each road under the constraints of 

their service levels and factors according to the 

analysis of the different effect factors caused by 

different roads and traffic engineering theory. They 

then calculated the ratio of the maximum traffic 

volume and the difference between the maximum 

traffic volume and the actual traffic volume. The latter 

volume is used as the evaluation standard for traffic 

congestion detection. This standard’s biggest 

advantage is that it has good adaptability to be able to 

adjust to different roads. Cheng et al. [46] proposed a 

method of traffic congestion detection in a harsh 

environment, but its time cost is very high and 

fluctuates. 

The traffic transit coefficient (TTC) describedin this 

paper is a conceptual value that is reasonably 

determined by the combination of traffic flow, road 

grade, vehicle type, and drivers’ driving technology. 

The advantage of the TTC calculation method 

described in this paper is that it can consider the 

differences in service level, lane width, and driving 

level caused by different roads and drivers 

simultaneously. Determining the road traffic situation 

using a variety of parameters can improve the accuracy 

and adaptability of the method, and thus we have 

proposed the TTC. Its calculation method is as follows: 

 d

d q

C

C C
ε =

−

 (7) 

In formula (7), Cd represents the passing ability of 

vehicles in a single lane; that is, the maximum traffic 

capacity among different service levels. Its 

measurement unit is PCU/h (where PCU represents 

passenger car unit). Cq represents the transit capacity of 

the actual road, and its measurement unit is PCU/h. A 

high TTC value means that the traffic flow is large and 

the road is congested. In calculating the passing 

capacity of a single lane, a model is built considering 

two aspects of the transit capacity, that of the basic 

sections of the highway connecting cities and that of 

urban road sections. 

4.2 TTC Calculation Method 

Transit capacity of highway basic sections. Regarding 

highway road conditions, the single lane transit 

capacity includes the following formulas: 

 
i
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Substituting (9) into (8), we obtain the expression for 

the traffic capacity:  
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In the above formulae, N represents the lane number 

of the single lane, 
w
f  the correction coefficient on the 

transit capacity of lane width and lateral width, 
i

sv
M  

themaximum service traffic volume [that is, the 

maximum service traffic volume at a certain service 

level, PCU/(h In)], 
B

C  the maximum traffic capacity of 

a lane under ideal conditions [PCU/(h In)); V the 

maximum service traffic volume of the service level i 

[PCU/(h In)]; C rthe basic transit capacity of the 

service level i, 
HV
f  the correction coefficient of the 

transit capacity of large vehicles, 
p
f  the correction 

coefficient of the transit capacity of the driver's 

condition,
HV
P  the percentage of the large vehicles’ 

traffic volume of the total traffic volume, and 
HV

E  the 

conversion coefficient of the conversion from large 

vehicles to minibuses.  

Transit capacity of urban road sections. The transit 

capacity of urban road sections is modified according 

to the theoretical transit capacity of a lane combined 

with the number of lanes, the width of lanes, and other 

factors; that is, 

 
d 0
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0

N =1000V/L   (14) 

 2

0 1 c
L=L +L +V t I V⋅ + ⋅   (15) 

V represents running speed (km/h), L the headway 

space of continuous traffic flow (m), L0 thevehicle’s 

safety distance in the parking state (m), L1 represents 

the body length of a vehicle (m), tc the reaction time of 

braking (the general value is 1 s), and I a parameter 

associated with the vehicle’s weight, road resistance 

coefficient, adhesion coefficient, and slope. 

γ represents the correction coefficient of the bicycle’s 

influence, η  the correction coefficient of the lane 

width’s influence, C the correction coefficient of an 

intersection’s influence, n' the correction coefficient of 

the lane number, 
bic

Q the traffic volume of bicycles 

(bicycles/h), W2 the width of the one-way bicycle lane 

(m), and W1 the width of the one-way motor lane (m). 

Substituting formulae (13)-(15) into formula 12, we 

can obtain the calculation model of the transit capacity 

of an urban road: 
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According to the different widths of motor vehicles 

and the different distances between intersections, the 

correction coefficient of the lane width’s influence and 

the correction coefficient of the intersection’s influence 

can be divided into two types: 

0
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0
C  in the formula 17 represents the width of motor 

lane (m), 
0

C  the green time ratio of the intersections, 

and (1 )
j

f

K
V V

K
= −  the space between intersections. 

Deduction of the relationship between a road’s 

travel time and traffic flow. Greenshields proposed a 

linear model of the velocity-density relation in 1963 

[47]:  

 (1 )
j

f

K
V V

K
= −  (19) 

The obstruction density Kj in the above formula 

represents the density in the situation in which the 

traffic flow is too dense for the vehicles to move (V = 0) 

and Vf the average vehicle speed when the density 

approaches 0. The relationship of the traffic speed V, 

the average flow Q, and the density K in the continuous 

flow traffic is deduced as follows:  

 f jV K  (20) 

Substituting (20) into (19), the relationship between 

traffic volume and density after simplification is 

obtained: 

 f jV K    (21) 

Assuming that the path between the two points is l, 

the time expression at the smooth speed is then:  

 f jV K  (22) 

The function of the travel speed and the time spent 

passing a section of road is expressed as  

 f jV K   (23) 

Substituting (22) and (23) into (21), we have 

 f jV K   (24) 

For a fixed road, f jV K  is a constant, and setting Z 

= f jV K , then  

 0
t 1

t 1 1 Q
+

2 4 Z

=

−

  (25) 

That is, t0/t on the unitary quadratic function, so the 

solution is:  

 0
t 1

t 1 1 Q
+

2 4 Z

=

−

 (26) 

In order to obtain the trend graph between Q/Z and 

t0/t, MATLAB software was used to draw its function 

diagram, which is presented as Figure 3.  
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Figure 3. Trend graph between Q/Z and t0/t 

The line in the figure does not represent congestion 

and the function described by the graph is 

0
t 1

t 1 1 Q
+

2 4 Z

=

−

; thus, we can see from the graph that 

Q/Z increases from 0 to infinity. The time that traffic 

increased and the speed of the car decreased was 

observed to rise; when traffic flow reached the capacity 

of the road section, Q/Z=1/4, and the road reached 

maximum flow, and the traffic density and speed was 

optimal. When the density increased continuously, the 

traffic density in the crowded state was plotted as line 

B, and the speed of the car began to decrease. The time 

spent traveling on the road began to increase when the 

traffic density was Kj and the road traffic was zero. The 

time passing through the road, in theory, was infinitely 

long. 

The actual traffic on the roads is equal to the average 

flow rate; that is, Q=Cq. inserting formula (26) into the 

TTC, d

d q

C

C C
ε =

−

, the relationship between the 

available time and the traffic factors can then be 

obtained as follows:  

 
2 2

0 0 0

2

( 1)
t

4 2

d
t C t t

Z

ε

ε

−

= − + +   (27) 



624 Journal of Internet Technology Volume 19 (2018) No.2 

 

It can be deduced from (27) that  
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Since t is constantly greater than zero, then  
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is constantly greater than 0

2

t
, 

2
t  is constantly smaller 

than zero, and we thus terminate the calculation. 

According to the different 
d

C  values adopted for 

different roads, we obtained the function of TTC and 

time applied to a specific road. In order to obtain the 

trend graph of t  and ε , we assumed that 
d

C =200 

PCU/h. The MATLAB function diagram is presented 

as Figure 4.  

0 5 10 15 20
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

ε

t

 

Figure 4. Function diagram of t  and ε  

It can be seen from the figure that ε increases as 

time t  increases, which is consistent with reality. 

4.3 Deducing the Traffic Time-Consuming 

Index 

The traffic time-consuming index (TTCI) proposed 

in this paper is the product of the average traffic flow 

speed on a certain road during a period of time and a 

basic algorithm of the TTCs, which are used as the 

weights of the direct path to evaluate the theoretical 

time cost of the road; that is, the TTCI. 

For the shortest path planning problem, much 

research has been done and much progress achieved. 

Among this research, the Dijkstra algorithm is the most 

famous single-source shortest path planning algorithm. 

On the basis of this method, the shortest time-

consuming path planning model is put forward in this 

paper. 

In the Dijkstra algorithm, the distance of roads is the 

only standard for selecting the vehicle and road. In this 

paper, we make use of the Dijkstra algorithm to 

propose the TTCI and obtain the relationship between 

the TTCI and the traffic transit coefficient of the road. 

The analysis and calculation process is as follows, in 

which T denotes TTCI. 

Regardless of the effect of traffic congestion, the 

time-consuming index T is linearly related to the 

distance L，and the travel time is determined by the 

distance and the travel speed. 

The time-consuming index T is linearly related to 

the traffic transit coefficient when only the influence of 

the traffic transit coefficient is considered. The 

relationship is as shown in (29), and the reason is that 

when the traffic transit coefficient approaches 1, the 

travel time approaches t0; that is, the speed of the car 

on the road approaches a smooth speed when the traffic 

transit coefficient continues to increase and the travel 

time increases as the congestion index increases. 

Considering the traffic transit coefficient ε and the 

effects of the road comprehensively, the algorithm 

obtains the relationship of the time-consuming index T, 

the distance l, traffic transit coefficient ε, and the 

vehicle's driving speed as shown in (30), and the 

function graphs are presented as Figure 5: 

 
l

lnT
V

ε= ⋅  (30) 

 

(a) 

 

(b) 

Figure 5. Time, TTC, and speed graph 
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5 Shortest Time-Consuming Path 

Planning Algorithm 

Murota [48] and other scholars believe that the 

Dijkstra algorithm has a great advantage in path 

planning when the vehicles are relatively concentrated 

because of its low time complexity and relatively 

simple calculation process. In order to decrease the 

reaction time by decreasing the calculation complexity, 

in this paper, based on the Dijkstra algorithm, we 

regarded each site as a node and the traffic roads as 

connection lines between nodes, and then calculated 

the shortest time-consuming index of each node to all 

other nodes. This approach is characterized by 

extending out from the starting point of the vehicle to 

the outer layer gradually until it extends to the end 

point. 

5.1 Principle of the Algorithm 

First, the algorithm regards each site as a node and 

the traffic roads as the connecting lines between nodes, 

and draws a weighted map of G=(V,E). According to 

the actual situation of the road and the above-

mentioned content, it calculates the time-consuming 

index of each road and divides the set of nodes V into 

two groups. The first group is the set of nodes that the 

shortest time-consuming index has already calculated 

(denoted P, and there is only one starting point in the 

initial P; the shortest path will be inserted into P once 

it is obtained, and the algorithm is finished after all of 

the nodes are added to P). The second group is the set 

of nodes that the shortest time-consuming index has 

not determined (denoted Q), and the nodes of the 

second group are added into P successively according 

to the increasing order of the shortest time-consuming 

index. During the adding process, the shortest path 

length from the initial point v to P is maintained to be 

no greater than the length of the shortest path from the 

initial point v to any node in Q. In addition, each vertex 

corresponds to a distance. The distance between the 

nodes in P is the shortest path length from v to the 

node, and the time-consuming index of nodes in Q is 

the current shortest path length from v to the point 

where only the nodes in P are intermediate nodes. 

5.2 Algorithm Steps 

The algorithm collects the information of roads 

between each node, and calculates the time-consuming 

index for each road using the method presented above. 

Initially, P only contains the starting point of the 

vehicle; that is, P={v}, where v's time-consuming 

index is 0. U includes all other points except v; that is, 

U={other points}. If there is a road u between U and v, 

then <u,v> has a normal weight as the time-consuming 

index; otherwise, if there is no road between u and v, 

then the <u,v> time-consuming index is ∞. 

The algorithm selects a minimum time-consuming 

point L from U, and then adds L to P (the selected 

distance is the shortest path length of v to L) 

It then sets L as the intermediate point of the new 

consideration, and then modifies each vertex’s time-

consuming index in U. If the time-consuming index 

from the source point v to the vertex u (passing through 

vertex L) is shorter than the original time-consuming 

index (not passing through vertex L), then the 

algorithm modifies the time-consuming index value of 

vertex u. The modified value is the traffic time-

consuming index value of vertex distance L added to 

the weight of the side. 

Repeat steps before until all vertexes included in P 

are intermediate nodes. 

6 Experimental Verification 

6.1 Experimental Data and Environment 

The experimental data used in this article was 

obtained from the traffic flow dataset published by the 

official website of the province of British Columbia, 

Canada [45]. Experiments were carried out using the 

data collected at monitoring points located at Royal 

Oak, Sooke, Six Mile Road, Burnside, and Colwood in 

British Columbia. The road conditions at the 

monitoring points are shown in Figure 6 to Figure 10. 

A total of 8760 h of data from each monitoring point in 

2001 were used. 

 

Figure 6. Road conditions at Royal Oak 

 

Figure 7. Road conditions at Colwood 
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Figure 8. Road conditions at Sooke 

 

Figure 9. Road conditions at Burnside 

 

Figure 10. Road conditions at Six Mile Road 

The experiment was carried out in MATLAB on a 

two-core, four-thread, 2.5-GHz computer with 8 G 

RAM running the Linux operating system (Ubuntu 

16.04 64-bit). The traffic flow was collected once 

every hour. The data collected from one of the 

monitoring points in a week are shown in Figure 11.  

 

Figure 11. Thedata from one monitoring point in a 

week 

6.2 Experiment and Analysis of Traffic Flow 

Prediction 

Using the traffic flow data given in this paper and 

the Elman neural network prediction method of traffic 

flow, we trained and predicted five monitoring nodes, 

using the first 1000 h of data as the training data and 

the last 120 h as the test data. The prediction results 

from one monitoring station are shown in Figure 12. 

 

Figure 12. Elman neural network traffic flow 

prediction 

Figure 13 presents the test data and results of the 

test’s residual error distribution. Figure 14 shows the 

training status, where the top row is the change of 

gradient, the second is adopted to avoid the overfitting 

problem of the network, and the third is the learning 

rate. After 2000 rounds of training, the learning rate 

reached 0.08699 in Figure 14. Figure 15 is the error 

distribution histogram and Figure 16 shows the linear 

regression. The data obtained from other monitoring 

points can also be presented using the above method 

 

Figure 13. Test data and results of the test’s residual 

error 

 

Figure 14. Training status 
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Figure 15. Error distribution histogram 
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Figure 16. Regression chart 

As can be seen from the diagrams above, by using 

the Elman neural network method for traffic flow 

forecasting, we achieved high accuracy and efficiency. 

6.3 Experiment and Analysis of ETC Path 

Planning Algorithm 

Finally, the data of the six nodes mentioned in 

Section 2.1 was tested using the intelligent navigation 

method proposed in this paper. As shown in Figure 17, 

our method selects monitoring points of the road as 

follows: 

Sooke

Royal Oak

Six Mile 

Road

Burnside

Colwood

Sidney

 

Figure 17. Path graph 

Step 1. Obtain the traffic flow statistics from the 

monitoring points in each path. 

Step 2. Predict the traffice flow in next unit of time 

based on the Elman neural network. The results are 

presented in Table 1. 

Table 1. Results of Elman neural network prediction 

for the six roads used in experimental verification of 

the proposed method 

Road 

names 
Colwood 

Royal 

Oak
Sooke 

Six Mile 

Road 
Burnside Sidney 

Traffic 

flow
99 93 5 2 6 1026 

 

Step 3. Use a calculation model of the coefficient for 

the traffic to calculate the traffic transit coefficient. 

The data for the six roads used in experimental 

verification of the proposed method are presented in 

Table 2. From the table, 
B

C [PCU/(h In)] denotes the 

largest amount of traffic in the next lane under ideal 

conditions, ( / )
i

V C  is the ratio of the maximum 

service volume to the basic capacity of the i-class 

service level, N is the number of unidirectional 

carriageway lanes, fw is the capacity of the correction 

factor of lane width and lateral net width, 
p
f  is the 

correction factor of the driver's condition for the traffic 

capacity; and 
HV
f  is the correction factor of traffic 

capacity of oversize vehicles. Substituting the above 

data into the Formula 8, you can get the basic section 

of the highway traffic capacity in Table 3. 

Table 2. Index data for the six roads used in 

experimental verification of the proposed method 

 CB
 

(V/C)i N fw
 

fp
 

fHV 

Colwood 2000 0.71 4 0.98 1 0.71 

Royal Oak 2000 0.71 4 0.99 1 0.63 

Sooke 1900 0.83 4 1 1 0.71 

Six Mile Road 1900 0.51 4 0.97 1 0.67 

Burnside 2000 0.71 4 0.96 1 0.71 

Sidney 1900 0.71 4 1 1 0.63 

Table 3. Basic capacities of the six roads used in 

experimental verification of the proposed method 

Road 

names 
Colwood 

Royal 

Oak 
Sooke

Six Mile 

Road 
Burnside Sidney 

ε  1.03 1.03 1.00 1.00 1.00 1.43

 

Step 4. Take the highest speed limit instead of the 

vehicle’s speed, and then make the assumption that per 

unit length is a. The lengths of the six roads used in 

experimental verification of the proposed method are 

shown in Table 4. 

Inserting the data into the formula, the traffic transit 

coefficients are obtained and presented in Table 5. 

The results of the normalized processing of ε is 

shown in Table 6. 
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Table 4. Ground speed and distance travelled of six 

roads used in experimental verification of the proposed 

method 

Road 

Names 
Colwood 

Royal 

Oak 
Sooke

Six Mile 

Road 
Burnside Sidney 

V(km/h) 100 100 80 100 100 80 

T  4a 5.6a 6.4a 4.7a 7.2a 3.1a 

Table 5. Traffic transit coefficients of the six roads 

used in experimental verification of the proposed 

method 

Road 

names 
Colwood 

Royal 

Oak 

Sook

e 

Six Mile 

Road 
Burnside Sidney 

ε  1.03 1.03 1.00 1.00 1.00 1.43 

Table 6. Uniformization of traffic transit coefficient of 

six roads used in experimental verification of the 

proposed method 

Road 

names 
Colwood 

Royal 

Oak 
Sooke 

Six Mile 

Road 
Burnside Sidney

T  1.96 1.96 1.9 1.9 1.9 2.72 

 

Step 5. After the journey, and after the normalized 

processing of the traffic coefficient, insert it and the 

speed of the vehicle into formula (16), thetransit time-

consuming indexes for the six roads used in 

experimental verification of the pro-posed method are 

obtained and shown in Table 7. 

Table 7. Traffic time-consuming indexes for the six 

roads used in experimental verification of the proposed 

method 

Road 

names 
Colwood 

Royal 

Oak 
Sooke 

Six Mile 

Road 
Burnside Sidney

T  0.027a 0.038a 0.051a 0.030a 0.046a 0.039a

 

Step 6. The time costs are obtained as presented in 

Figure 18. Then, inserting them into the Dijkstra 

algorithm, the shortest path is determined to be 

Colwood→Burnside→Royal Oak. Compared to the 

algorithm that only considers path length, the proposed 

method is less time-consuming. 

Sooke

0.051a

Royal Oak

0.038a

Six Mile 

Road

0.030a

Burnside

0.046a

Colwood

0.027a

Sidney

0.039a

 

Figire 18. Model of weights 

6.4 Algorithm for Real-time Inspection 

Real-time inspection is an important factor in 

intelligent vehicle navigation systems. Therefore, we 

tested the real-time performance of the algorithm. We 

used the detector mode of the MATLAB software to 

examine the algorithm and totaled the running time; 

the results are presented in Figure 19. 

 

Figure 19. Algorithm running times 

As can be seen from Figure 19, the main time cost 

occurred in making the traffic flow forecast, which 

consumed approximately 29s. The network training 

time and data reading time was approximately 20s, 

while the actual path travel time used in the traffic 

navigation path planning was generally more than 5 

min. Therefore, the ETC path planning method 

proposed in this paper has a better instantaneity 

performance, which can meet the real-time 

requirements of intelligent traffic navigation systems, 

and its fluctuation in the time cost of the traffic flow 

forecast is within tolerances.  

Meanwhile, compared to an ordinary traffic 

navigation system, the proposed intelligent traffic 

navigation system based on the ETC path planning 

method takes the time cost of a vehicle’s driving 

process into account, which means it is more in line 

with actual situations. It solves the untimeliness 

problem in navigation caused by the fluctuation of the 

degree of traffic congestion at a node due to changes in 

traffic flow. While ensuring the instantaneity of the 

algorithm, this method further improves the 

instantaneity of navigation results in a Big Data 

environment. 

7 Conclusion 

We have designed an intelligent vehicle navigation 

path planning system based on the vehicle automatic 

identification method, forecasting method, the shortest 

path determination algorithm, and the cloud model, 
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which can save a user time in reaching a destination 

and relieve the degree of urban traffic congestion in a 

Big Data environment. Meanwhile, the proposed 

methods of calculating both the traffic transit 

coefficient of the video-based vehicle identification 

system and the traffic time-consuming index 

considering various factors comprehensively have high 

reference value in the field of traffic detection. 

Moreover, they also be used to alleviate traffic 

congestion, and can be applied to the detection of 

traffic congestion in a specific environment. The 

proposed method, in addition, has low time cost and 

space complexity, and it can be analyzed in the cloud 

platform for processing of very large amounts of data. 
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