
A New Method for Abnormal Behavior Propagation in Networked Software 489

A New Method for Abnormal Behavior Propagation in

Networked Software

Cheng Peng1,2,3, Ming Liu1,3, Xin-Pan Yuan1,3, Long-Xin Zhang1,3, Jun-Feng Man1,2,3*

1 School of Computer Science and Technology, Hunan University of Technology, China
2 School of Information Science and Engineering, Central South University, China

3 Key Laboratory of Hunan Province for Intelligent Information Perception and Processing, China

Chengpeng@csu.edu.cn, lihijjie@sina.com, yipingsoong@sina.com, jianiingzhao@sina.com, mjfok@qq.com

*Corresponding Author: Jun-Feng Man; E-mail: mjfok@qq.com

DOI: 10.3966/160792642018031902017

Abstract

In general, bugs in software are inevitable. The study

on the abnormal behavior propagation mechanism trigged

by bugs in networked software provides the way for

people to grasp the execution rule and to adopt

corresponding pinning measurements. Based on the

situation of abnormal behavior propagation at different

granularity software entities, three factors - propagation

probability, interactive frequency and connection rate

which affects the abnormal behavior propagation, are

proposed, and corresponding definition and computation

method are also investigated. The process model for

abnormal behavior propagation is constructed in

reference to the compartment model, individual models

and three factors mentioned above, which improves the

expression ability of model and enhances its

completeness and accuracy. Then, the analytical method

for abnormal behavior propagation is applied to the

online electronic shopping system, and the results testify

the correctness and feasibility of the propagation

mechanism.

Key words: Networked software, Abnormal behavior,

Propagation model, System bug

1 Introduction

Abnormal behaviors refer to defects or bugs in the

software system itself, which result in deviation

between system behavior at runtime and normal

behavior, and eventually cause failure. Generally, bugs

are inevitable and cost much to detect and repair. The

outbreak of them will cause incalculable loss and

damage. The networked software based on the Internet

[1], whose behaviors are complex [2], uncontrollable

and continuously evolutionary [3], integrates various

heterogeneous resources and services. The small errors

within elements may cause the collapse of the whole

system, which brings great challenge to data security

and the quality of service. Accordingly, it is

indispensable to control and eliminate the abnormal

behavior propagation for networked software before

the outbreak of the disaster, and it is also urgent to

maintain the normal and stable software system

operation, and to provide continuous and reliable

services for users. At present, there have much

beneficial achievement on software bug classification

[4], distribution [5], testing [6], modeling and repairing

mechanisms [7-8], but there are still some limitations:

(1) the analysis object is significantly stand-alone

system software, which leads to the analysis deficiency

of distributed large-scale software system under the

network environment; (2) the exist model can only

detect and verify known errors by adopting the error

injection, but can not express and analyze the potential

unknown errors and propagation rules; (3) the

analytical model is constructed in reference to the

computer virus propagation model and the biological

virus propagation model, which cannot be totally

adapted to the networked software and can not

realistically portray or reveal propagation characteristics

of its abnormal behaviors; (4) the granularity of these

models are large, and mainly consider internal error

propagation more at system-level and component-level

than at program-level; (5) incorrect behaviors break

away from the system execution environment, which

are treated as a range of fixed modes, so it is very weak

for the scalability and universality of models; (6) the

analytical model is mainly for low-level language

system with the hardware support which costs very

much.

Based on preliminary work [9], the abnormal

behavior propagation model for networked software is

constructed in reference to the compartment model [10]

and individual model [11]. From the analysis of coarse-

granularities such as components and classes to fine-

granularities such as functions and attribute, we

propose three factors─ error propagation probability,

connection rate and interactive frequency, which affect

the abnormal behavior propagation in the networked

software. These provide strong basis for future work

like abnormal behavior pinning control to find the

490 Journal of Internet Technology Volume 19 (2018) No.2

impact of various factors on the abnormal behavior

propagation by solving the model differential equations,

and to apply the model to typical networked software

system to testify the correctness and availability of the

theory by adopting empirical methods.

The rest of the paper is organized as follows: in

Section 2, the current studies on software abnormal

behavior are briefly reviewed; the mechanisms for

abnormal behavior propagation are described in detail

in Section 3; in Section 4, the experimental results and

corresponding analysis are shown; finally, the

conclusion is given in Section 5.

2 Related Work

In recent years, many researchers have made many

attempts for the problem of abnormal behavior from

the design phase, coding phase [12], and testing phase

[13-14] to the system reliability evaluation phase [15].

They, from different perspective, constructed the

analytical model to detect and locate abnormal

behaviors based on system-level or component-level

that played a certain role in improving the stability and

reliability of the system. In addition, Avizienis pointed

out that multi-layer faults should be considered when

constructing the abnormal behavior model [16], and a

single logical value (with/without faults) could not

fully express some vital abnormal behaviors. The

author also stressed the importance of the error

propagation between components and the system.

However, most modeling methods did not pay

attention to the error propagation of components and

the system [17]. As far as we know, it is seldom

mentioned that constructing the abnormal behavior

propagation model from the perspective of multiple

granularities. Based on other factors, Elmqvist and

Nadjm-Tehrani [18] proposed a formal modeling

method with security interface and provided

combinational reasoning on the system security.

Grunske and Neumann [19] constructed a system error

behavior model by adopting the troubleshooting and

conversion symbol FDTN (Failure Diagnosis and

Transformation Notation), which could deduct the CFT

(Component Fault Trees) to analyze the security.

Rugina adopted error model accessories of AADL

(Architecture Analysis and Design Language) to

construct composite system error behavior models, and

transformed these models into stochastic Petri nets or

Markov chains for analyzing [20]. Joshi also made a

further study on converting these error behavior

models to fault trees [21]. These efforts mainly focused

on models of known error behaviors, so there is still

considerable research scope on factors affecting error

behavior propagation and improvements of models’

completeness.

3 The Mechanism for Abnormal Behavior

Propagation

3.1 The Abnormal Propagation Model for

Networked Software

Figure 1 depicts the multiple-granularities error

propagation model for networked software system.

Each component consists of several classes which

contain a variety of functions. Calls between functions,

relationships between classes and messages passing

between components are represented by directed edges.

Components, classes and functions are presented by

different granularity nodes.

The error rate ()int f i inside the component i refer

to the implicit error probability of component i.

However, errors inside components will not necessarily

propagate to other components and result in the system

error. Therefore, we need to introduce the

parameter ()ep i , which represents the error propagation

probability inside the component i. We assumed that

the system is composed of C numbers of interactive

components, and we adopted (),p i j ()1 ,i j C≤ ≤ to

represent the error propagation probability between

components. It is clear that () (), 1
j

i p i j∀ =∑ , and

models allow self-conversion, so (), 0p i i ≠ .

Figure 1. The model for abnormal propagation and related parameters

Relationships between function calls directly reflect

the connection rate. The execution process of the

software system constitutes a time-varying network N ,

in which nodes are relatively fixed and edges are time-

varying. Where, V is a node set and ()E t is a dynamic

directed edge set. Directed solid lines at Figure 1

A New Method for Abnormal Behavior Propagation in Networked Software 491

indicate function calls at some time and directed dotted

lines at Figure 1 represent possible call relationships.

Circles with black dots in Figure 1 represent implied

error nodes.

The interactive frequency refers to the calling and

called number between two nodes during a certain

period. Some implied error nodes in a handful of

execution could not propagate errors to other nodes

which interact with them, but when the interactive

frequency reaches the upper limitation, it may cause

other nodes calling the node to generate errors. The

interactive frequency also reflects the execution

frequency and the importance of some operation in the

networked software. In Figure 1, directed solid lines in

bold represent frequent interaction between nodes.

3.2 Model Construction

3.2.1 Related Definition

Definition 1. (The Error Probability inside Components)

the error probability inside components ()int f i is a

static estimate value.

 int ()
1000

i
FD l

f i
⋅

= (1)

Here,
i
l is the number of codes lines and FD is the

error density.

Definition 2. (The Error Propagation Probability inside

Components) the error propagation probability inside

components ()ep i is derived based on FPIC (Failure

Proneness Index of Class) which can be presented by

CK six standard value [22]:

 X X X

X

i i i

CBO WMC RFC
FPIC

CBO WMC RFC
α β γ= + + (2)

X
CBO ,

X
WMC and

X
RFC are the attribute value of

CBO, RFC and WMC of class X,
i

CBO ,
i

WMC and

i
RFC are the sum of attribute value of CBO, RFC and

WMC of all classes in component i, α , β and γ are

the corresponding weight of these three attributes.

According to the effect and the index of failure

proneness, the error propagation probability inside

components can be described as follows:

 ()
1

1 C
M

X

XC

ep i FPIC
M

=

= ∑ (3)

Here,
C

M is the sum of classes inside the component i.

Definition 3. (The Error Propagation Probability

between Components) the error propagation

probability between components (),p i j can be

defined as follows:

 () () ()(), |
j j

p i j P C p C q p q⎡ ⎤ ⎡ ⎤= ≠ ≠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4)

Here,
j

C⎡ ⎤
⎢ ⎥⎣ ⎦

 is the function of the component j, which

contains the node state transition that is generated by

function calls in the component j and the output when

component j is executed. p and q are passing

messages between the component i and j. The

propagation probability given by formula (4) can be

described as the following aspects: the state generated

in the component i, the transition probability between

states and the entropy of the message propagation

between component i and component j.

 ()

() ()

[]
,

2
1

,

2

,

1

,
1

j i j

C Cj j

i j

C Ci j

C C C p

p S q S

C C

m M

P p P F q

p i j
P m

−

∈ ∈

∈

⎡ ⎤− ⎢ ⎥⎣ ⎦

=
−

∑ ∑

∑
 (5)

Here,
jC

S is the states in component j,
jC

P is the state

probability distribution,
,i jC C

P is the probability

distribution of passing message
,i jC C

M between

component i and j, the conversion function ()1

p
F q

− is

the message m needed to be inputted when the state p

transfers to the state q. ()
2

1

,i j

C j

C C p

q S

P F q
−

∈

⎡ ⎤
⎢ ⎥⎣ ⎦∑ and

[]
,

2

,i j

C Ci j

C C

m M

P m

∈

∑ are the second-order Renyi entropy

index. We assume that both the state
jC

S of the

component j and the message
,i jC C

M that the

component i propagates to the component j are equal

probability distributions, so the formula (5) can be

simplified as follows:

 ()

()
2

1

2

,

,

1
1

,
1

1

C Cj j
j i j

i j

p

p S q S
C C C

C C

F q

S M
p i j

M

−

∈ ∈

−

=

−

∑ ∑
 (6)

When the state transition function F is unknown, it

is assumed that the number of messages which every

initial state triggered to transfer to another new state is

the same, so, the upper limitation can be obtained as

follows:

 ()

,

1
1

,
1

1

j

i j

C

C C

S
p i j

M

−

≤

−

 (7)

Definition 4. (Multi-step Propagation Probability)

Multi-step propagation probabilities is
() (),

k
err i j . It is

given that execution starts from the component I,

reaches the component j after K steps control transfer

492 Journal of Internet Technology Volume 19 (2018) No.2

and generates error output probability. The

probability
() ()k

err can be associated with
() ()1k

err
−

by the following recursion formula,

() () () () () () ()(), , int 1 int
k k

err i j p i j f j ep j f j= ⋅ + ⋅ − ⋅

() () ()1

0

, ,

C

k

h

err i h p h j
−

=

∑ (8)

When 0,k < we can know
() (), 0,
k

err i j =

() ()0

, interr i j = ()()f j i j∀ =
() () ()0

, 0err i j i j= ∀ ≠ .

Definition 5. (The connection rate) Considering the

directed graph ()(),G V E t , the connection rate can be

expressed as follows,

()
()

()
1

E t
c t

V V
=

⋅ −

 (9)

()E t is the edge number of the directed graph G as

the software system interaction formed at time t and

V is the node number. The connection rate describes

the degree of connectivity between nodes. When the

connection rate is greater, the degree of connectivity

between nodes becomes higher, thus the abnormal

behavior propagation possibility is larger.

Definition 6. (The Interactive Frequency ()tµ).

Software system interaction forms directed graph G

which can be represented by an adjacency matrix ()A t ,

in which the connected edges between nodes are

changing with time. At time t, the connection between

node i and its neighbors can be described by the

neighborhood of i, () () () (){ }, 1,2,...,
i ij ij
V t a t a t A t j N= ∈ = ,

which represents the i-th row vector of the matrix. And

there is a connection between the node i and the node j.

() 1
ij
a t = , on the contrary, () 0

ij
a t = , multiple time

slices can form multiple adjacency matrices ()A t ,

which can be added up to constitute the interactive

frequency matrix ()
1

T

t

B A t

=

=∑ - between nodes during

a certain period T, while, the neighborhood ()
i

V T of

the node i in the interactive frequency matrix B

represents the number that B interacts with neighbor

nodes at time t, so the interactive frequency between

the node i and node j can be further represented

as ()
1 1

/

N N

ij ij ij

i j

t b bµ

= =

= ∑∑ , and the interactive frequency

of G is ()
1 1

()
N N

i ij

i j

t d tµ µ

= =

=∑∑ ,
i

d being the degree of

the node i.

3.2.2 Model Construction

The software abnormal behavior propagation is

analyzed by the SI model of the two-state compartment

and the individual model [23]. ()S t indicates the

number of healthy nodes, ()I t represents the number

of implied error nodes. Figure 2 shows the two-state

compartment model and α is the infection intensity.

Figure 2. SI compartment model diagram

As what we have considered is the network software

system, whose interactive behaviors are complex and

the node number is relatively large, so deterministic

compartment propagation models are adopted and the

balance equation of each compartment is,

()
()

()
()

dS t
S t

dt

dI t
S t

dt

α

α

⎧⎪
⎪ =−⎪
⎪
⎪
⎨
⎪
⎪
⎪ =⎪
⎪⎩

At time t, as the connecting rate is known, the

implied error node i can connect with ()()1c t N−

nodes of G at most and the proportion that these nodes

are not infected by errors is ()()1 /I t N− , so

()()(1)(1 /)c t N I t N− − is the number of healthy nodes

()S t connected with the node i. the interactive

frequency between nodes is ()tµ , the propagation

probability is β . Here, different methods are adopted

to calculate the propagation probability according to

different granularity nodes as the above definition.

Thus, the ratio of health nodes which are infected is

() () () /t S t I t Nβμ and the infection intensity is

()

()
t
I t

N

βμ
α=

The infection rate is

()t

a
N

βμ
= (10)

So we can conclude that

()

() ()
dI t

aS t I t
dt

= (11)

() ()() ()()1 1 /S t c t N I t N= − − is known, so the

abnormal behavior propagation analysis model is,

()

()()(1)(1 () /)
dI t

ac t N I t N I t
dt

= − − (12)

A New Method for Abnormal Behavior Propagation in Networked Software 493

When N is large, 1N N− ≈ , then the above formula

can be simplified as,

()

() () () ()2
dI t

Nac t I t ac t I t
dt

= − (13)

The general solution is

 ()
()

1
ac t Nt

N
I t

CNe
−

=

+

 (14)

Here, C is constant. It is assumed that there is only

one implicit error node, that is (0) 1I = , when the

initial time is 0t= .

 ()
1

0 1 1
1

N N
I C

CN N

−
= ⇒ = ⇒ =

+

The final solution is

 ()
()

1 (1)
ac t Nt

N
I t

N e
−

=

+ −

The diffusion rate of error nodes can be represented as

 ()
()

()

1

1 (1)
ac t Nt

I t
i t

N N e
−

= =

+ −

 (15)

4 Experiments and Analysis

The model for abnormal behavior propagation can

be testified based on the networked software system -

Web Shop. Figure 3 is the architecture of Web Shop

platform, which mainly constitutes components C1-C8.

Multiple users log in or register to enter the shopping

platform through the different geographical location of

the GUI at the same time, interact with Identifier and

DBMS of cloud data center, are triggered to confirm

the task, then simultaneously enter the Market to buy

and order goods and form the core of the cloud data

center with the Account Manager. The latter uses the

data which the database system provides and manages

the user’s operation request by interacting with all

other components (such as Messenger, Verifier and

Payment Platform).

Figure 4 shows the dynamic model which is formed

by partly components interaction and the state

transition diagram inside all components. The message

sets between components can be obtained by Rose-RT

and other similar tools. The input message is Msg1

(C3_C4), output messages are Msg1 (C4_C5),

Msg2(C4_C5), Msg3(C4_C5), Msg4(C4_C5),

Msg5(C4_C5). Therefore, upper limitation values of

the error propagation probability between the

component C4 and component C5 can be calculated

according to the formula (7). Here, Ci=C4, Cj=C5,

5

2
C

S = ,
4 5
,

5
C C

M = , () () ()4,5 1 0.5 / 1 0.2P ≤ − −

0.625= . The error propagation probability between

any two components of the system can be obtained

based on the above reasoning. In addition, according to

the formula (1), the error rate intf() inside components

can be also gained. As is shown in the Table 3.

Figure 3. The architecture of Web Shop platform

Figure 4. dynamic model [9] and state conversion

diagram inside all components

494 Journal of Internet Technology Volume 19 (2018) No.2

4.1 Error Propagation Probability

Here, taken component GUI as an example, which

realizes the user log in, registration and sending

verification E-mail. Table 1 gives all classes CK

standard attribute values of GUI, which are obtained by

the open source software CKJM and standard plug-in

Eclipse. The error propagation probability ep() inside

corresponding components can be calculated according

to the formula (3). We can see it from the Table 2.

Table 1. All classes CK standard attribute values inside the GUI

Class name RFC CBO WMC FPIC

javax.mail.Properties 16 15 2 0.13896

javax.mail.Session 7 4 1 0.05193

javax.mail.Transport ep() 21 18 6 0.21087

javax.mail.MimeMessage 5 3 2 0.05103

javax.mail.Internet Address 3 7 4 0.08042

javax.mail.Internet.MimeMultpart 2 5 4 0.06883

javax.mail.Internet.MimeBodyPart 6 4 2 0.05868

javax.activation.DataHandler 17 16 6 0.18826

javax.activation.FileDataSource 14 12 5 0.15099

Table 2. The error propagation probability inside the GUI

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

0 0.11 0.56 0.25 0.74 0.62 0.08 0.43 0.23 0

Table 3. The error propagation probability between components

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 intf()

C0 0 1 0 0 0 0 0 0 0 0 0

C1 0 0 0.999 0 0 0 0 0 0 0.001 0.019

C2 0 0 0 0.235 0.667 0 0.098 0 0 0 0.032

C3 0 0.056 0.026 0 0.917 0 0 0 0 0.001 0

C4 0 0 0 0 0 0.625 0 0 0 0.375 0.007

C5 0 0 0 0 0 0 0 0.9377 0 0.0623 0.005

C6 0 0 0 0 0 1 0 0 0 0 0

C7 0 0 0 0 0 0.01 0 0 0.99 0 0

C8 0 0 0 0 0 1 0 0 0 0 0.1021

C9 0 0 0 0 0 0 0 0 0 1 0

4.2 Interaction Frequency

During a certain period T, we can divide the

execution process of the software, which can be treated

as the addition of multiple-time-slices interactive

behavior diagram. We also can take the component C4

as an example. It contains 4 states - search-goods,

order-items, invalid-order and valid-order. The call

relationships among them constitute the interactive

behavior diagram ()()4
,G V E t , { }

1 2 3 4
, , ,V V V V V= , in

which total call relationships are () 9E t = . The

corresponding execution footprints during this period

are shown in Figure 5. Then, according to definition

(6), the interactive matrix B between nodes inside the

component C4 can be obtained at T=200s. It is assumed

that there is interaction between the node
1

V and other

external nodes. If
11

1b = , the interactive frequency

()tµ between nodes of the component C4 can be

calculated.

Figure 5. Interactive behavior diagram and

corresponding execution footprints

1 3 0 0

0 0 1 2

1 0 0 0

1 0 0 0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 9 1 3 0 0

0 0 1 9 2 9

1 9 0 0 0

1 9 0 0 0

ij
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

[] []4 3 1 2 9 2 9
i

µ = , thus, at T=200s, the

A New Method for Abnormal Behavior Propagation in Networked Software 495

interactive frequency of the component C4 is

() 2.99tµ ≈ . About 18,000 execution footprint logs of

the component C4 are collected during 7 24× hours in

the experiment. According to the statistical analysis,

we can know that the interactive frequency follows

the Poisson distribution, that is, ()
!

t

e
T t

t

λλ
μ

−

= =

()0,1,2,...t= .

4.3 Connection Rate

It was found that the connection rate of the

interactive behavior diagram set{ }
1 2 3
, , , ,

t
G G G G� met

power-low distribution during different period, that is

()c t Ht
θ−

= , 1.53846θ= , 345.167H = , and the

correlation coefficient is 98.9605% . Figure 6 shows

the connection ratio curve: due to the abnormal

behavior propagation in the software system, the

connection ratio gradually decreases as time goes on,

thereafter the connection ratio is stable at a certain

value, which explains the normal execution of the

program is disturbed by errors, calls between functions

significantly reduce and the task of these components

can not be normally completed, which make the whole

software system in paralysis or half-paralysis condition.

We can also know the linear equation obtained by

fitting connection ratio is similar to ()c t , when t is

large (t > 600), the relative deviation is less than 10%,

as shown in Figure 7.

Figure 6. Connection ratio

Figure 7. Relative deviation

4.4 Diffusion Rate and Infection Rate

For Web Shop system at runtime, 63 time points

within 90 minutes are randomly selected as test

samples to generate the interaction behavior diagram,

which is used to obtain propagation probability,

connection ratio and interactive frequency. Thus, the

distribution and fitting curve of spreading ratio is

calculated, according result is shown in Figure 8. At

time T = 90 min, the spreading ratio reaches its

maximum value, close to 94%, which indicates that

most nodes in the system are affected by abnormal

behavior propagation. Similarly, according to the

formula (10), the infection rate affected by abnormal

behaviors within 400 minutes also can be described as

in Figure 9. In a relatively short time, once errors

inside the software are triggered, implied error nodes

will accelerate the infection to healthy nodes, and the

infection rate will also rapidly increase. At time T=96

min, the infection rate reaches a peak to 0.40, which

corresponds to the spreading ratio. In addition, the

infection rate is positively related to the interactive

frequency, which follows the Poisson distribution. The

variation tendency of infection rate also testifies

experimental results.

Figure 8. Spreading ratio

Figure 9. Infection rate

4.5 Accuracy of Model Comparison

The accuracy rate of the model can be defined as the

496 Journal of Internet Technology Volume 19 (2018) No.2

ratio of the error node number which is contained in

propagation path of abnormal behavior and the average

value of error nodes which results from the spread of

abnormal behavior by injecting errors. First, we

adopted PROPANE to inject errors, traced the

propagation of abnormal behavior and calculated error

node sum until abnormal behaviors propagation results

into system failure. As is shown in Figure 10, when

injecting error number toward the Highest out-degree

inside the component C4, through two intermediate

nodes, abnormal behavior begins to spread; after 10

intermediate nodes, the error ratio of the system

reaches the maximum of 100%; when injecting errors

toward the Lowest out-degree inside the component C4,

through four intermediate nodes, abnormal behavior

begins to spread; after 13 intermediate nodes, the error

ratio of the system reaches the maximum of 100%,

finally to system standstill. We repeat above

experiment, and the whole data is the average of 100

experiments. Finally, the number of average error node

of the system is 12.

Figure 10. Error nodes analysis

To compare with the method presented in the paper,

we adopted DTMP, SPN and BN to analyze abnormal

behavior propagation. The result is the average of 100

times and the accuracy rate comparison is shown in

Figure 11. It is indicated that the ABPM considers

three factors affecting abnormal behavior propagation,

the analysis ability of this model is less disturbed by

the system scale and the accuracy ratio is still high,

about 99%. DTMP assumes that the system execution

follows Markov property, that is, at any given time,

only one component can be executed, concurrency and

synchronization can not be handled and the failures of

components are also independent. Such assumption is

not fit for the actual operation of the networked

software, so the accuracy of model is affected. SPN has

strong analytical abilities for concurrency,

synchronization and uncertainty, but it has low

accuracy, because state-space exponentially increases

with the model scale. Although BN is able to deal with

association of the abnormal propagation between

implicit error nodes and healthy nodes, the assumption

bases on the independence of node failures is sensitive

to the system scale, so the accuracy of this model needs

to be improved.

Figure 11. Accuracy compare

5 Conclusion

The study on the abnormal behavior propagation

mechanism for networked software plays a significant

role in improving the stability and reliability of such

new software system. Based on the insufficiency of the

existing model, factors affecting the abnormal behavior

propagation for networked software are firstly

proposed, then the detailed definitions and calculation

methods are given and finally the abnormal behavior

propagation model is derived. Compared to other

models, the abnormal behavior propagation model for

networked software comprehensively takes into

consideration the dynamic process of software system

execution from different granularities, which has

stronger expressing abilities. Especially in the analysis

of the abnormal behavior of unknown errors of the

system, the model is more accurate and reasonable.

However, there is still a long way to go as for how to

find other factors affecting abnormal behavior

propagation, how to further improve the model

completeness, and how to effectively control abnormal

behavior to improve the stability of the system.

Acknowledgement

This paper is supported by Natural Science

Foundation of China (No. 61503131, No. 61702178),

The Natural Science Foundation of Hunan Province

(No.2016JJ5035, 2016JJ5036, 2015JJ2046, 2017JJ3065,

2018JJ4063), The Major Project of Hunan Province

Education Department (No.16A059, 17A052), The

Excellent Youth Project of Hunan Province Education

Department (No. 16B071), State Key Laboratory of

Software Engineering, Wuhan University Open Issue

(No. SKLSE2014-10-06).

A New Method for Abnormal Behavior Propagation in Networked Software 497

References

[1] Y.-T. Ma, K.-Q. He, B. Li, J. Liu, Empirical Study on the

Characteristics of Complex Networks in Networked Software,

Journal of Software, Vol. 22, No. 3, pp. 381-407, March,

2011.

[2] J. Q. Fang, X. F. Wang, Z. G. Zheng, Research of Dynamical

Complexity of Nonlinear Networks, Complex Systems and

Complexity Science, Vol. 7, No. 2-3, pp. 5-9, 2014.

[3] C. W. He, L. J. Zhang, H. Zhang, An Approach to Aspect-

oriented Software Evolution Based on Metadata and

Reflection, Acta Electronica Sinica, Vol. 39, No. 8, pp. 1771-

1777, August, 2011.

[4] A. Sureka, Learning to Classify Bug Reports into

Components, International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation,

Prague, Czech Republic, 2012, pp. 288-303.

[5] H. Y. Zhang, On the Distribution of Software Faults, IEEE

Transactions on Software Engineering, Vol. 34, No. 2, pp.

301-302, March, 2008.

[6] P. Chen, H. Han, X. B. Shen, X.-C. Yin, B. Mao, L. Xie,

Detecting Integer Bugs Based on Static and Dynamic

Program Analysis, Acta Electronica Sinica, Vol. 38, No. 8, pp.

1741-1747, August, 2010.

[7] C. Lin, Y. Z. Wang, Y. Yang, Y. Qu, Research on Network

Dependability Analysis Methods Based on Stochastic Petri

Net, Acta Electronica Sinica, Vol. 34, No. 2, pp. 322-332,

February, 2006.

[8] J. S. Monson, M. Wirthlin, B. Hutchings, A Fault Injection

Analysis of Linux Operating on an FPGA-embedded

Platform, International Journal of Reconfigurable Computing,

Vol. 2012, Article ID 850487, 2012.

[9] C. Peng, L. M. Yang, J. F. Man, Dynamic Modeling of

Networked Software Interactive Behavior, Acta Electronica

Sinica, Vol. 41, No. 2, pp. 314-320, February, 2013.

[10] Y. Nakata, P. Getto, A. Marciniak-Czochra, T. Alarcón,

Stability Analysis of Multi-compartment Models for Cell

Production Systems, Journal of Biological Dynamics, Vol. 6,

No. 1, pp. 2-18, January, 2012.

[11] S. M. Balakrishnan, A. K. Sangaiah, Aspect-oriented

Middleware Framework for Resolving Service Discovery

Issues in Internet of Things, IJIPT, Vol. 9, No. 2-3, pp. 62-78,

February, 2016.

[12] B. Yang, D. Liu, W. Zhang, Information Dissemination in

Mobile Social Networks with Gossip Algorithms,

International Journal of Ad Hoc and Ubiquitous Computing,

Vol. 21, No. 4, pp. 259-265, January, 2016.

[13] P. R. Su, D. G. Feng, An Anomaly Intrusion Detection Model

Based on Nonhierarchical Clustering, Acta Electronica Sinica,

Vol. 34, No. 10, pp. 1809-1811, October, 2006.

[14] J. J. Xu, Q. P. Tan, L. Xiong, J. Ye, A Quantitative Approach

for Program Reliability Analysis of Soft Errors, Acta

Electronica Sinica, Vol. 39, No. 3, pp. 675-679, March, 2011.

[15] J. Dou, Z. Zhang, J. Dang, L. Wu, Y. Wei, C. Sun, Properties

and Achievable Data Rate of a Cyclic Prefix Based Imperfect

Reconstruction Filter Bank Multiple access System, IET

Communications, Vol. 10, No. 17, pp. 2427-2434, November,

2016.

[16] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic

Concepts and Taxonomy of Dependable and Secure

Computing, IEEE Transactions on Dependable and Secure

Computing, Vol. 1, No. 1, pp. 11-33, January-March, 2004.

[17] M. Hiller, A. Jhumka, N. E. Suri, EPIC: Profiling the

Propagation and Effect of Data Errors in Software, IEEE

Transactions on Computers, Vol. 53, No. 5, pp. 512-530,

May, 2004.

[18] J. Elmqvist, S. Nadjm-Tehrani, Safety-oriented Design of

Component Assemblies Using Safety Interfaces, Electronic

Notes in Theoretical Computer Science, Vol. 182, pp. 57-72,

June, 2007.

[19] L. Grunske, R. Neumann, Quality Improvement by Integrating

Non-functional Properties in Software Architecture

Specification, EASY, Vol. 2, No. 1, pp. 23-32, 2013.

[20] A. E. Rugina, K. Kanoun, M. Kaâniche, An Architecture-

based Dependability Modeling Framework Using AADL,

10th IASTED Int. Conf. on Software Engineering and

Applications, Dallas, TX, 2006, pp. 222-227.

[21] P. Popic, D. Desovski, W. Abdelmoez, B. Cukic, Error

Propagation in the reliability Analysis of Component-based

Systems, Proceedings of the 16th IEEE International

Symposium on Software Reliability Engineering, Chicago, IL,

2005, pp. 53-62.

[22] S. R. Chidamber, C. F. Kemerer, A Metrics Suite for Object

Oriented Design, IEEE Transactions on Software Engineering,

Vol. 20, No. 6, pp. 476-493, June, 1994.

[23] Y. Wang, J. Wang, L. Zhang, Cross Diffusion-induced

Pattern in an SI Model, Applied Mathematics and

Computation, Vol. 217, No. 5, pp. 1965-1970, November,

2010.

Biographies

Cheng Peng He received the M.E.

and the Ph.D. degree in School of

Information Science and Engineering,

Central South University, Chang Sha,

China. His current research interests

include networked software, computer

network and software engineering.

Ming Liu was born in Yangzhou,

Jiangsu 1993. He is pursuing for

master’s degree in Hunan University

of Technology. His research interests

include Big Data, Crowd Computing

etc.

Xin-Pan Yuan received the Ph.D.

degree in Information Science and

Engineering, Central South University

in 2012. His current research interests

include information retrieval.

498 Journal of Internet Technology Volume 19 (2018) No.2

Long-Xin Zhang received the Ph.D.

degree in Computer Science from

Hunan University, Changsha, China.

His research interests include real-

time systems, power aware computing

and fault-tolerant systems, modeling

and scheduling for distributed

computing systems.

Jun-Feng Man Corresponding author.

He received Ph.D. degree in School of

Information Science and Engineering,

Central South University in 2010,

ChangSha, China. His research

interests include networked software,

big data technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

