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Abstract 

In general, bugs in software are inevitable. The study 

on the abnormal behavior propagation mechanism trigged 

by bugs in networked software provides the way for 

people to grasp the execution rule and to adopt 

corresponding pinning measurements. Based on the 

situation of abnormal behavior propagation at different 

granularity software entities, three factors - propagation 

probability, interactive frequency and connection rate 

which affects the abnormal behavior propagation, are 

proposed, and corresponding definition and computation 

method are also investigated. The process model for 

abnormal behavior propagation is constructed in 

reference to the compartment model, individual models 

and three factors mentioned above, which improves the 

expression ability of model and enhances its 

completeness and accuracy. Then, the analytical method 

for abnormal behavior propagation is applied to the 

online electronic shopping system, and the results testify 

the correctness and feasibility of the propagation 

mechanism. 

Key words: Networked software, Abnormal behavior, 

Propagation model, System bug 

1 Introduction 

Abnormal behaviors refer to defects or bugs in the 

software system itself, which result in deviation 

between system behavior at runtime and normal 

behavior, and eventually cause failure. Generally, bugs 

are inevitable and cost much to detect and repair. The 

outbreak of them will cause incalculable loss and 

damage. The networked software based on the Internet 

[1], whose behaviors are complex [2], uncontrollable 

and continuously evolutionary [3], integrates various 

heterogeneous resources and services. The small errors 

within elements may cause the collapse of the whole 

system, which brings great challenge to data security 

and the quality of service. Accordingly, it is 

indispensable to control and eliminate the abnormal 

behavior propagation for networked software before 

the outbreak of the disaster, and it is also urgent to 

maintain the normal and stable software system 

operation, and to provide continuous and reliable 

services for users. At present, there have much 

beneficial achievement on software bug classification 

[4], distribution [5], testing [6], modeling and repairing 

mechanisms [7-8], but there are still some limitations: 

(1) the analysis object is significantly stand-alone 

system software, which leads to the analysis deficiency 

of distributed large-scale software system under the 

network environment; (2) the exist model can only 

detect and verify known errors by adopting the error 

injection, but can not express and analyze the potential 

unknown errors and propagation rules; (3) the 

analytical model is constructed in reference to the 

computer virus propagation model and the biological 

virus propagation model, which cannot be totally 

adapted to the networked software and can not 

realistically portray or reveal propagation characteristics 

of its abnormal behaviors; (4) the granularity of these 

models are large, and mainly consider internal error 

propagation more at system-level and component-level 

than at program-level; (5) incorrect behaviors break 

away from the system execution environment, which 

are treated as a range of fixed modes, so it is very weak 

for the scalability and universality of models; (6) the 

analytical model is mainly for low-level language 

system with the hardware support which costs very 

much. 

Based on preliminary work [9], the abnormal 

behavior propagation model for networked software is 

constructed in reference to the compartment model [10] 

and individual model [11]. From the analysis of coarse-

granularities such as components and classes to fine-

granularities such as functions and attribute, we 

propose three factors─ error propagation probability, 

connection rate and interactive frequency, which affect 

the abnormal behavior propagation in the networked 

software. These provide strong basis for future work 

like abnormal behavior pinning control to find the 
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impact of various factors on the abnormal behavior 

propagation by solving the model differential equations, 

and to apply the model to typical networked software 

system to testify the correctness and availability of the 

theory by adopting empirical methods.  

The rest of the paper is organized as follows: in 

Section 2, the current studies on software abnormal 

behavior are briefly reviewed; the mechanisms for 

abnormal behavior propagation are described in detail 

in Section 3; in Section 4, the experimental results and 

corresponding analysis are shown; finally, the 

conclusion is given in Section 5. 

2 Related Work 

In recent years, many researchers have made many 

attempts for the problem of abnormal behavior from 

the design phase, coding phase [12], and testing phase 

[13-14] to the system reliability evaluation phase [15]. 

They, from different perspective, constructed the 

analytical model to detect and locate abnormal 

behaviors based on system-level or component-level 

that played a certain role in improving the stability and 

reliability of the system. In addition, Avizienis pointed 

out that multi-layer faults should be considered when 

constructing the abnormal behavior model [16], and a 

single logical value (with/without faults) could not 

fully express some vital abnormal behaviors. The 

author also stressed the importance of the error 

propagation between components and the system. 

However, most modeling methods did not pay 

attention to the error propagation of components and 

the system [17]. As far as we know, it is seldom 

mentioned that constructing the abnormal behavior 

propagation model from the perspective of multiple 

granularities. Based on other factors, Elmqvist and 

Nadjm-Tehrani [18] proposed a formal modeling 

method with security interface and provided 

combinational reasoning on the system security. 

Grunske and Neumann [19] constructed a system error 

behavior model by adopting the troubleshooting and 

conversion symbol FDTN (Failure Diagnosis and 

Transformation Notation), which could deduct the CFT 

(Component Fault Trees) to analyze the security. 

Rugina adopted error model accessories of AADL 

(Architecture Analysis and Design Language) to 

construct composite system error behavior models, and 

transformed these models into stochastic Petri nets or 

Markov chains for analyzing [20]. Joshi also made a 

further study on converting these error behavior 

models to fault trees [21]. These efforts mainly focused 

on models of known error behaviors, so there is still 

considerable research scope on factors affecting error 

behavior propagation and improvements of models’ 

completeness. 

3 The Mechanism for Abnormal Behavior 

Propagation 

3.1 The Abnormal Propagation Model for 

Networked Software 

Figure 1 depicts the multiple-granularities error 

propagation model for networked software system. 

Each component consists of several classes which 

contain a variety of functions. Calls between functions, 

relationships between classes and messages passing 

between components are represented by directed edges. 

Components, classes and functions are presented by 

different granularity nodes. 

The error rate ( )int f i  inside the component i refer 

to the implicit error probability of component i. 

However, errors inside components will not necessarily 

propagate to other components and result in the system 

error. Therefore, we need to introduce the 

parameter ( )ep i , which represents the error propagation 

probability inside the component i. We assumed that 

the system is composed of C numbers of interactive 

components, and we adopted ( ),p i j  ( )1 ,i j C≤ ≤  to 

represent the error propagation probability between 

components. It is clear that ( ) ( ), 1
j

i p i j∀ =∑ , and 

models allow self-conversion, so ( ), 0p i i ≠ . 

 

Figure 1. The model for abnormal propagation and related parameters 

Relationships between function calls directly reflect 

the connection rate. The execution process of the 

software system constitutes a time-varying network N , 

in which nodes are relatively fixed and edges are time-

varying. Where, V  is a node set and ( )E t  is a dynamic 

directed edge set. Directed solid lines at Figure 1 
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indicate function calls at some time and directed dotted 

lines at Figure 1 represent possible call relationships. 

Circles with black dots in Figure 1 represent implied 

error nodes. 

The interactive frequency refers to the calling and 

called number between two nodes during a certain 

period. Some implied error nodes in a handful of 

execution could not propagate errors to other nodes 

which interact with them, but when the interactive 

frequency reaches the upper limitation, it may cause 

other nodes calling the node to generate errors. The 

interactive frequency also reflects the execution 

frequency and the importance of some operation in the 

networked software. In Figure 1, directed solid lines in 

bold represent frequent interaction between nodes. 

3.2 Model Construction 

3.2.1 Related Definition 

Definition 1. (The Error Probability inside Components) 

the error probability inside components ( )int f i is a 

static estimate value. 

 int ( )
1000

i
FD l

f i
⋅

=  (1) 

Here, 
i
l is the number of codes lines and FD is the 

error density. 

Definition 2. (The Error Propagation Probability inside 

Components) the error propagation probability inside 

components ( )ep i  is derived based on FPIC (Failure 

Proneness Index of Class) which can be presented by 

CK six standard value [22]: 

 X X X

X

i i i

CBO WMC RFC
FPIC

CBO WMC RFC
α β γ= + +  (2) 

X
CBO , 

X
WMC  and 

X
RFC  are the attribute value of 

CBO, RFC and WMC of class X, 
i

CBO , 
i

WMC  and 

i
RFC  are the sum of attribute value of CBO, RFC and 

WMC of all classes in component i, α , β  and γ  are 

the corresponding weight of these three attributes. 

According to the effect and the index of failure 

proneness, the error propagation probability inside 

components can be described as follows: 

 ( )
1

1 C
M

X

XC

ep i FPIC
M

=

= ∑  (3) 

Here, 
C

M is the sum of classes inside the component i. 

Definition 3. (The Error Propagation Probability 

between Components) the error propagation 

probability between components ( ),p i j  can be 

defined as follows: 

 ( ) ( ) ( )( ), |
j j

p i j P C p C q p q⎡ ⎤ ⎡ ⎤= ≠ ≠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4) 

Here, 
j

C⎡ ⎤
⎢ ⎥⎣ ⎦

 is the function of the component j, which 

contains the node state transition that is generated by 

function calls in the component j and the output when 

component j is executed. p and q  are passing 

messages between the component i and j. The 

propagation probability given by formula (4) can be 

described as the following aspects: the state generated 

in the component i, the transition probability between 

states and the entropy of the message propagation 

between component i and component j. 

 ( )

( ) ( )

[ ]
,

2
1

,

2

,

1

,
1

j i j

C Cj j

i j

C Ci j

C C C p

p S q S

C C

m M

P p P F q

p i j
P m

−

∈ ∈

∈

⎡ ⎤− ⎢ ⎥⎣ ⎦

=
−

∑ ∑

∑
 (5) 

Here, 
jC

S is the states in component j, 
jC

P is the state 

probability distribution, 
,i jC C

P is the probability 

distribution of passing message 
,i jC C

M between 

component i and j, the conversion function ( )1

p
F q

−  is 

the message m needed to be inputted when the state p 

transfers to the state q. ( )
2

1

,i j

C j

C C p

q S

P F q
−

∈

⎡ ⎤
⎢ ⎥⎣ ⎦∑  and 

[ ]
,

2

,i j

C Ci j

C C

m M

P m

∈

∑ are the second-order Renyi entropy 

index. We assume that both the state 
jC

S of the 

component j and the message 
,i jC C

M that the 

component i propagates to the component j are equal 

probability distributions, so the formula (5) can be 

simplified as follows: 

 ( )

( )
2

1

2

,

,

1
1

,
1

1

C Cj j
j i j

i j

p

p S q S
C C C

C C

F q

S M
p i j

M

−

∈ ∈

−

=

−

∑ ∑
 (6) 

When the state transition function F is unknown, it 

is assumed that the number of messages which every 

initial state triggered to transfer to another new state is 

the same, so, the upper limitation can be obtained as 

follows: 

 ( )

,

1
1

,
1

1

j

i j

C

C C

S
p i j

M

−

≤

−

 (7) 

Definition 4. (Multi-step Propagation Probability) 

Multi-step propagation probabilities is 
( ) ( ),

k
err i j . It is 

given that execution starts from the component I, 

reaches the component j after K steps control transfer 
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and generates error output probability. The 

probability
( ) ( )k

err  can be associated with 
( ) ( )1k

err
−

 

by the following recursion formula, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , int 1 int
k k

err i j p i j f j ep j f j= ⋅ + ⋅ − ⋅  

( ) ( ) ( )1

0

, ,

C

k

h

err i h p h j
−

=

∑   (8) 

When 0,k <  we can know
( ) ( ), 0,
k

err i j =  

( ) ( )0

, interr i j =  ( )( )f j i j∀ =
( ) ( ) ( )0

, 0err i j i j= ∀ ≠ . 

Definition 5. (The connection rate) Considering the 

directed graph ( )( ),G V E t , the connection rate can be 

expressed as follows, 

 
( )
( )

( )
1

E t
c t

V V
=

⋅ −

 (9) 

( )E t  is the edge number of the directed graph G as 

the software system interaction formed at time t and 

V  is the node number. The connection rate describes 

the degree of connectivity between nodes. When the 

connection rate is greater, the degree of connectivity 

between nodes becomes higher, thus the abnormal 

behavior propagation possibility is larger. 

Definition 6. (The Interactive Frequency ( )tµ ). 

Software system interaction forms directed graph G 

which can be represented by an adjacency matrix ( )A t , 

in which the connected edges between nodes are 

changing with time. At time t, the connection between 

node i and its neighbors can be described by the 

neighborhood of i, ( ) ( ) ( ) ( ){ }, 1,2,...,
i ij ij
V t a t a t A t j N= ∈ = , 

which represents the i-th row vector of the matrix. And 

there is a connection between the node i and the node j. 

( ) 1
ij
a t = , on the contrary, ( ) 0

ij
a t = , multiple time 

slices can form multiple adjacency matrices ( )A t , 

which can be added up to constitute the interactive 

frequency matrix ( )
1

T

t

B A t

=

=∑  - between nodes during 

a certain period T, while, the neighborhood ( )
i

V T  of 

the node i in the interactive frequency matrix B 

represents the number that B interacts with neighbor 

nodes at time t, so the interactive frequency between 

the node i and node j can be further represented 

as ( )
1 1

/

N N

ij ij ij

i j

t b bµ

= =

= ∑∑ , and the interactive frequency 

of G is ( )
1 1

( )
N N

i ij

i j

t d tµ µ

= =

=∑∑ , 
i

d  being the degree of 

the node i. 

3.2.2 Model Construction 

The software abnormal behavior propagation is 

analyzed by the SI model of the two-state compartment 

and the individual model [23]. ( )S t  indicates the 

number of healthy nodes, ( )I t  represents the number 

of implied error nodes. Figure 2 shows the two-state 

compartment model and α  is the infection intensity. 

 

Figure 2. SI compartment model diagram 

As what we have considered is the network software 

system, whose interactive behaviors are complex and 

the node number is relatively large, so deterministic 

compartment propagation models are adopted and the 

balance equation of each compartment is, 

 

( )
( )

( )
( )

dS t
S t

dt

dI t
S t

dt

α

α

⎧⎪
⎪ =−⎪
⎪
⎪
⎨
⎪
⎪
⎪ =⎪
⎪⎩

  

At time t, as the connecting rate is known, the 

implied error node i can connect with ( )( )1c t N−  

nodes of G at most and the proportion that these nodes 

are not infected by errors is ( )( )1 /I t N− , so 

( )( )( 1)(1 / )c t N I t N− −  is the number of healthy nodes 

( )S t  connected with the node i. the interactive 

frequency between nodes is ( )tµ , the propagation 

probability is β . Here, different methods are adopted 

to calculate the propagation probability according to 

different granularity nodes as the above definition. 

Thus, the ratio of health nodes which are infected is 

( ) ( ) ( ) /t S t I t Nβμ  and the infection intensity is 

 
( )

( )
t
I t

N

βμ
α=   

The infection rate is  

 
( )t

a
N

βμ
=  (10) 

So we can conclude that 

 
( )

( ) ( )
dI t

aS t I t
dt

=  (11) 

( ) ( )( ) ( )( )1 1 /S t c t N I t N= − − is known, so the 

abnormal behavior propagation analysis model is, 

 
( )

( )( )( 1)(1 ( ) / )
dI t

ac t N I t N I t
dt

= − −  (12) 
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When N is large, 1N N− ≈ , then the above formula 

can be simplified as, 

 
( )

( ) ( ) ( ) ( )2
dI t

Nac t I t ac t I t
dt

= −  (13) 

The general solution is 

 ( )
( )

1
ac t Nt

N
I t

CNe
−

=

+

 (14) 

Here, C is constant. It is assumed that there is only 

one implicit error node, that is (0) 1I = , when the 

initial time is 0t= . 

 ( )
1

0 1 1
1

N N
I C

CN N

−
= ⇒ = ⇒ =

+
 

The final solution is  

 ( )
( )

1 ( 1)
ac t Nt

N
I t

N e
−

=

+ −

 

The diffusion rate of error nodes can be represented as 

 ( )
( )

( )

1

1 ( 1)
ac t Nt

I t
i t

N N e
−

= =

+ −

 (15) 

4 Experiments and Analysis 

The model for abnormal behavior propagation can 

be testified based on the networked software system - 

Web Shop. Figure 3 is the architecture of Web Shop 

platform, which mainly constitutes components C1-C8. 

Multiple users log in or register to enter the shopping 

platform through the different geographical location of 

the GUI at the same time, interact with Identifier and 

DBMS of cloud data center, are triggered to confirm 

the task, then simultaneously enter the Market to buy 

and order goods and form the core of the cloud data 

center with the Account Manager. The latter uses the 

data which the database system provides and manages 

the user’s operation request by interacting with all 

other components (such as Messenger, Verifier and 

Payment Platform). 

Figure 4 shows the dynamic model which is formed 

by partly components interaction and the state 

transition diagram inside all components. The message 

sets between components can be obtained by Rose-RT 

and other similar tools. The input message is Msg1 

(C3_C4), output messages are Msg1 (C4_C5), 

Msg2(C4_C5), Msg3(C4_C5), Msg4(C4_C5), 

Msg5(C4_C5). Therefore, upper limitation values of 

the error propagation probability between the 

component C4 and component C5 can be calculated 

according to the formula (7). Here, Ci=C4, Cj=C5, 

5

2
C

S = , 
4 5
,

5
C C

M = , ( ) ( ) ( )4,5 1 0.5 / 1 0.2P ≤ − −  

0.625= . The error propagation probability between 

any two components of the system can be obtained 

based on the above reasoning. In addition, according to 

the formula (1), the error rate intf( ) inside components 

can be also gained. As is shown in the Table 3. 

 

Figure 3. The architecture of Web Shop platform 

 

Figure 4. dynamic model [9] and state conversion 

diagram inside all components 
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4.1 Error Propagation Probability 

Here, taken component GUI as an example, which 

realizes the user log in, registration and sending 

verification E-mail. Table 1 gives all classes CK 

standard attribute values of GUI, which are obtained by 

the open source software CKJM and standard plug-in 

Eclipse. The error propagation probability ep( ) inside 

corresponding components can be calculated according 

to the formula (3). We can see it from the Table 2. 

Table 1. All classes CK standard attribute values inside the GUI 

Class name RFC CBO WMC FPIC 

javax.mail.Properties 16 15 2 0.13896 

javax.mail.Session 7 4 1 0.05193 

javax.mail.Transport ep( ) 21 18 6 0.21087 

javax.mail.MimeMessage 5 3 2 0.05103 

javax.mail.Internet Address 3 7 4 0.08042 

javax.mail.Internet.MimeMultpart 2 5 4 0.06883 

javax.mail.Internet.MimeBodyPart 6 4 2 0.05868 

javax.activation.DataHandler 17 16 6 0.18826 

javax.activation.FileDataSource 14 12 5 0.15099 

Table 2. The error propagation probability inside the GUI 

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

0 0.11 0.56 0.25 0.74 0.62 0.08 0.43 0.23 0 

Table 3. The error propagation probability between components 

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 intf( ) 

C0 0 1 0 0 0 0 0 0 0 0 0 

C1 0 0 0.999 0 0 0 0 0 0 0.001 0.019 

C2 0 0 0 0.235 0.667 0 0.098 0 0 0 0.032 

C3 0 0.056 0.026 0 0.917 0 0 0 0 0.001 0 

C4 0 0 0 0 0 0.625 0 0 0 0.375 0.007 

C5 0 0 0 0 0 0 0 0.9377 0 0.0623 0.005 

C6 0 0 0 0 0 1 0 0 0 0 0 

C7 0 0 0 0 0 0.01 0 0 0.99 0 0 

C8 0 0 0 0 0 1 0 0 0 0 0.1021 

C9 0 0 0 0 0 0 0 0 0 1 0 

 

4.2 Interaction Frequency 

During a certain period T, we can divide the 

execution process of the software, which can be treated 

as the addition of multiple-time-slices interactive 

behavior diagram. We also can take the component C4 

as an example. It contains 4 states - search-goods, 

order-items, invalid-order and valid-order. The call 

relationships among them constitute the interactive 

behavior diagram ( )( )4
,G V E t , { }

1 2 3 4
, , ,V V V V V= , in 

which total call relationships are ( ) 9E t = . The 

corresponding execution footprints during this period 

are shown in Figure 5. Then, according to definition 

(6), the interactive matrix B between nodes inside the 

component C4 can be obtained at T=200s. It is assumed 

that there is interaction between the node 
1

V  and other 

external nodes. If 
11

1b = , the interactive frequency 

( )tµ  between nodes of the component C4 can be 

calculated. 

 

Figure 5. Interactive behavior diagram and 

corresponding execution footprints 

 

1 3 0 0

0 0 1 2

1 0 0 0

1 0 0 0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    

1 9 1 3 0 0

0 0 1 9 2 9

1 9 0 0 0

1 9 0 0 0

ij
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

[ ] [ ]4 3 1 2 9 2 9
i

µ = , thus, at T=200s, the 
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interactive frequency of the component C4 is 

( ) 2.99tµ ≈ . About 18,000 execution footprint logs of 

the component C4 are collected during 7 24×  hours in 

the experiment. According to the statistical analysis, 

we can know that the interactive frequency follows 

the Poisson distribution, that is, ( )
!

t

e
T t

t

λλ
μ

−

= =  

( )0,1,2,...t= . 

4.3 Connection Rate 

It was found that the connection rate of the 

interactive behavior diagram set{ }
1 2 3
, , , ,

t
G G G G�  met 

power-low distribution during different period, that is 

( )c t Ht
θ−

= , 1.53846θ= , 345.167H = , and the 

correlation coefficient is 98.9605% . Figure 6 shows 

the connection ratio curve: due to the abnormal 

behavior propagation in the software system, the 

connection ratio gradually decreases as time goes on, 

thereafter the connection ratio is stable at a certain 

value, which explains the normal execution of the 

program is disturbed by errors, calls between functions 

significantly reduce and the task of these components 

can not be normally completed, which make the whole 

software system in paralysis or half-paralysis condition. 

We can also know the linear equation obtained by 

fitting connection ratio is similar to ( )c t , when t is 

large (t > 600), the relative deviation is less than 10%, 

as shown in Figure 7. 

 

Figure 6. Connection ratio 

 

Figure 7. Relative deviation 

4.4 Diffusion Rate and Infection Rate 

For Web Shop system at runtime, 63 time points 

within 90 minutes are randomly selected as test 

samples to generate the interaction behavior diagram, 

which is used to obtain propagation probability, 

connection ratio and interactive frequency. Thus, the 

distribution and fitting curve of spreading ratio is 

calculated, according result is shown in Figure 8. At 

time T = 90 min, the spreading ratio reaches its 

maximum value, close to 94%, which indicates that 

most nodes in the system are affected by abnormal 

behavior propagation. Similarly, according to the 

formula (10), the infection rate affected by abnormal 

behaviors within 400 minutes also can be described as 

in Figure 9. In a relatively short time, once errors 

inside the software are triggered, implied error nodes 

will accelerate the infection to healthy nodes, and the 

infection rate will also rapidly increase. At time T=96 

min, the infection rate reaches a peak to 0.40, which 

corresponds to the spreading ratio. In addition, the 

infection rate is positively related to the interactive 

frequency, which follows the Poisson distribution. The 

variation tendency of infection rate also testifies 

experimental results. 

 

Figure 8. Spreading ratio 

 

Figure 9. Infection rate 

4.5 Accuracy of Model Comparison 

The accuracy rate of the model can be defined as the 
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ratio of the error node number which is contained in 

propagation path of abnormal behavior and the average 

value of error nodes which results from the spread of 

abnormal behavior by injecting errors. First, we 

adopted PROPANE to inject errors, traced the 

propagation of abnormal behavior and calculated error 

node sum until abnormal behaviors propagation results 

into system failure. As is shown in Figure 10, when 

injecting error number toward the Highest out-degree 

inside the component C4, through two intermediate 

nodes, abnormal behavior begins to spread; after 10 

intermediate nodes, the error ratio of the system 

reaches the maximum of 100%; when injecting errors 

toward the Lowest out-degree inside the component C4, 

through four intermediate nodes, abnormal behavior 

begins to spread; after 13 intermediate nodes, the error 

ratio of the system reaches the maximum of 100%, 

finally to system standstill. We repeat above 

experiment, and the whole data is the average of 100 

experiments. Finally, the number of average error node 

of the system is 12. 

 

Figure 10. Error nodes analysis 

To compare with the method presented in the paper, 

we adopted DTMP, SPN and BN to analyze abnormal 

behavior propagation. The result is the average of 100 

times and the accuracy rate comparison is shown in 

Figure 11. It is indicated that the ABPM considers 

three factors affecting abnormal behavior propagation, 

the analysis ability of this model is less disturbed by 

the system scale and the accuracy ratio is still high, 

about 99%. DTMP assumes that the system execution 

follows Markov property, that is, at any given time, 

only one component can be executed, concurrency and 

synchronization can not be handled and the failures of 

components are also independent. Such assumption is 

not fit for the actual operation of the networked 

software, so the accuracy of model is affected. SPN has 

strong analytical abilities for concurrency, 

synchronization and uncertainty, but it has low 

accuracy, because state-space exponentially increases 

with the model scale. Although BN is able to deal with 

association of the abnormal propagation between 

implicit error nodes and healthy nodes, the assumption 

bases on the independence of node failures is sensitive 

to the system scale, so the accuracy of this model needs 

to be improved. 

 

Figure 11. Accuracy compare 

5 Conclusion 

The study on the abnormal behavior propagation 

mechanism for networked software plays a significant 

role in improving the stability and reliability of such 

new software system. Based on the insufficiency of the 

existing model, factors affecting the abnormal behavior 

propagation for networked software are firstly 

proposed, then the detailed definitions and calculation 

methods are given and finally the abnormal behavior 

propagation model is derived. Compared to other 

models, the abnormal behavior propagation model for 

networked software comprehensively takes into 

consideration the dynamic process of software system 

execution from different granularities, which has 

stronger expressing abilities. Especially in the analysis 

of the abnormal behavior of unknown errors of the 

system, the model is more accurate and reasonable. 

However, there is still a long way to go as for how to 

find other factors affecting abnormal behavior 

propagation, how to further improve the model 

completeness, and how to effectively control abnormal 

behavior to improve the stability of the system.  
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