
QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 471

QuickSwap: A Lightweight Fast Recovery Protocol for

Mesh-based P2P Live Streaming

Chih-Chiang Wang, Bi-Wei Zhuang, Mon-Yen Luo*

Department of Computer Science, National Kaohsiung University of Applied Sciences, Taiwan

ccwang@kuas.edu.tw, xnilwind@gmail.com, myluo@kuas.edu.tw

*Corresponding Author: Chih-Chiang Wang; E-mail: ccwang@kuas.edu.tw

DOI: 10.3966/160792642018031902015

Abstract

In this paper, we propose a failure recovery protocol

named QuickSwap for mesh-based P2P live streaming

systems. Unlike the existing mCache-based failure

recovery scheme, QuickSwap enables peers to quickly

recover their live streaming quality from neighbor

failures by exchanging and pre-processing of local

streaming information. Our contributions in this work are

two-fold. First, QuickSwap’s lightweight streaming-

information exchange protocol together with the

proposed neighbor maintenance and streaming-quality

estimation methods provide a significant performance

edge over the conventional mCache-based failure

recovery. Second, we have built a system model for our

proposal and have evaluated QuickSwap’s performance

under different system settings through simulation

methodology. Our results reveal that at a small,

affordable overhead cost, QuickSwap protocol can

support fast recovery of live streaming quality with a

nearly 100% failure recovery success rate and a fail-over

time less than one second for an average of exponentially

distributed peer lifetimes as low as 10 minutes.

Keywords: P2P live media streaming, Fault tolerance,

Fail-over recovery

1 Introduction

P2P live media streaming is becoming an

increasingly popular Internet application, as evidenced

by commercial offerings from PPTV [1], PPstream [2],

Sopcast [3], among others. Unlike traditional Content

Delivery Networks which rely on dedicated servers to

deliver live media content [4-7], P2P live media

streaming utilizes free but unreliable upload capacity

of end-user participants (peers), thus achieving benefits

of low deployment cost and high scalability. Peers

typically form an overlay network, download live

media content directly from the media source or from

their overlay neighbors at a required streaming rate,

and play the received content in approximate

synchronicity with the source. However, research

studies [8-10] indicate that inherent peer churn, or the

dynamics of peers joining and leaving the P2P system,

can cause peers experiencing frequent neighbor

failures and unable to download from the remaining

neighbors at the required rate. Therefore, a key design

issue in supporting good P2P live streaming quality is

how to maintain a sufficient supply of live media

stream to each peer under the impact of peer churn.

Of interest in this work is the mesh-based P2P live

streaming scheme used to achieve scalable and robust

live media delivery in several proposals [11-14].

Modern mesh-based P2P designs reduce the churn’s

impact by dividing the live media stream into K

multiple sub-streams, K ≥ 1, so each peer can retrieve

the sub-streams independently from K different

content-supplier neighbors termed parents. To enhance

P2P live streaming quality under the churn’s impact,

our objective is the design of a lightweight fast

recovery protocol named QuickSwap to periodically

maintain K parents in each peer’s neighbor set plus a

few backup parents in reserve for fast fail-over, so at

least K out of all the parents and backup parents are

highly likely to survive until the next maintenance

operation.

Our proposal is beneficial in two ways. Firstly,

maintaining a few backup parents is more cost-

effective than maintaining a large set of parents or

neighbors. Because each parent failure costs a peer an

instantaneous loss of one K-th of its live media supply,

the latter approach must use a very large

parent/neighbor set to keep this loss fraction negligible,

but doing so will incur expensive neighbor-

communication overhead. In comparison, our results

show that by QuickSwap protocol, maintaining a

couple of additional backup parents every 30 seconds

is enough to support fast recovery of live streaming

quality with a nearly 100% failure recovery success

rate and a fail-over time less than one second for an

average of exponentially distributed peer lifetimes as

low as 10 minutes. Secondly, QuickSwap can

efficiently exploit local information to facilitate

lightweight fast recovery. A mesh-based P2P system

generally adopts a gossip-like protocol to maintain a

list of backup neighbors in its membership cache

(mCache), but our simulation results reveal that it takes

472 Journal of Internet Technology Volume 19 (2018) No.2

a non-trivial random amount of time for a peer to find

itself a qualified parent from the mCache. In

comparison, QuickSwap periodically pre-screens local

mCache information and streaming-status information

exchanged between neighbors to stock up on a few

backup parents. By this pre-screening method,

QuickSwap reduces the task of failure recovery to only

fail-over to the backups. The contributions of this work

are two-fold: (1) For achieving fast recovery in mesh-

based P2P live streaming, the design of QuickSwap has

included a streaming-status protocol for lightweight

information exchange, a distributive streaming-quality

estimation method, and a neighbor maintenance

algorithm to help each peer stock up on a required

number of parents and backup parents. (2) We have

built a system model for our proposal and have

evaluated QuickSwap’s performance under different

settings through simulation methodology. The balance

of this paper is organized as follows. In Section 2, we

survey existing work on P2P live streaming systems

and fail-over recovery of P2P overlay, and relate them

to our own. In Section 3, we model a general mesh-

based P2P live streaming system and introduce the

terminology and the mathematical symbols used

through this paper. In Section 4, we introduce the

design rationale, the message format, and the operation

of QuickSwap protocol. In Section 5, we conduct

simulation experiments to evaluate QuickSwap’s

performance under different system settings. We

finally conclude in Section 6.

2 Related Work

2.1 P2P Live Streaming

Existing P2P live media streaming technologies can

be broadly classified into either the tree-based or the

mesh-based. The earlier proposals were largely built

upon the tree-based overlay where participants are

organized into one or more end-system multicast trees.

The media source can deliver the live media stream to

peers through the tree structure. The tree-based

schemes can be further classified into the single-tree

[15-17] or the multiple-tree [18-21]. The single-tree

has long been criticized for its inefficiency because

leaves in a single multi-cast tree can barely serve the

live media to other peers. The multiple-tree improves

its load balancing by dividing the live media stream

into multiple sub-streams and disseminating each sub-

stream over an independent multicast tree. Overall

speaking, the tree-based schemes suffer performance

degradation and expensive maintenance overheads

under peer churn.

The mesh-based data-driven P2P live streaming was

firstly proposed in [11] and later refined in [12-14].

Unlike the tree-based schemes, the mesh-based

schemes achieve good fault resilience and load

balancing by employing swarm-like content delivery

whereby peers form a random mesh overlay and pull

live media content from their overlay neighbors.

Large-scale P2P streaming experiments [8, 11-12] have

validated the feasibility of the mesh-based schemes in

real systems over the Internet. For these reasons, our

work is built on the basis of the mesh-based P2P live

media streaming.

2.2 Fail-over Recovery of P2P Overlay

P2P overlay networks can quickly respond to

neighbor failures by fail-over to backup neighbor

connections. The history of applying fail-over recovery

to P2P overlay maintenance can be traced back to the

early era of structured P2P systems. In [22], Zhao et al.

use backup routing paths and fault detection techniques

to achieve fast failure recovery in a fault-resilient

overlay named Tapestry [23]. The work of [24]

introduces the property of K-consistent neighbor table

to improve robustness and failure recovery of

structured P2P overlays.

Gossip protocols are commonly used to find good

neighbor candidates in the mesh overlay with low

management overhead. In mesh-based P2P live

streaming [11-12], each peer employs SCAMP-like

gossip [25] to maintain its mCache, which records a

partial list of currently active peers in the system as

backup neighbors. However, the mCache is a

stochastic result of the underlying gossip propagation,

so there is no guarantee which peers recorded in the

mCache are capable of serving the live media stream to

the peer host. AnySee [13] has a backup path

management design which uses reverse tracing to find

better streaming paths in the overlay. In [13], when the

media source receives a request for reverse tracing, the

source computes the best streaming path and sends the

result back to the requester. The work of [26] proposes

an ID-based Web Browser with ISP-friendly P2P

content delivery property. In [27], the authors leverage

under-utilized resources in a community network to

form caches of files. The work of [28] proposes an

enhanced failover mechanism for P2P streaming over

multiple multicast trees, which is considered too rigid

to be practical. The work of [29] proposes a ternary

cube model named Hyper-Ternary-Cube to support

content-based music searches with error tolerance in a

peer-to-peer overlay. In the work of [30], the authors

propose a new Time-Driven Mesh (TDM) overlay

network for peer-to-peer video-on-demand systems. In

the work of [31], the authors we propose peer selection

with QoS aware for P2P IPTV service by evaluating

quality of video content delivered using an end-to-end

measuring approach.

Our design of QuickSwap protocol is distinguished

from the related work in several aspects. QuickSwap

avoids centralized mechanisms which place the

computation burden on a single node. Moreover,

QuickSwap achieves lightweight fast recovery of P2P

live streaming quality by local information exchange

QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 473

and pre-screening of the received local information.

3 System Model

Our model targets at a general mesh-based P2P

system where a live media stream is originated from a

media source vs and is being distributed to the peers in

the system throughout a live broadcast session. The

live media stream is divided into a sequence of blocks

of uniform length without any coding, and the video

blocks are grouped into K logical sub-streams such that

the i-th sub-stream contains blocks with sequence

number (i+j．K), where i is a positive integer from 1 to

K and j is a non-negative integer [12]. The required

streaming rate for this media stream is r kbps (kilo-bits

per second). Suppose at a specific moment of time t, Vt

is the set of active peers in the system and Et is the set

of overlay connections among peers in Vt. Then the

overlay of this P2P system at time t resembles an

undirected graph Gt = (Vt, Et).

Peers with a direct overlay connection between

themselves are termed neighbors. Suppose vx,t is an

active peer vx at time t, then Ψx,t represents the

neighbors of vx,t. Each peer records a random partial

list of the currently active peers in its mCache and can

contact them to establish m neighbors in the overlay.

Each peer also stores in buffermaps the availability

information of the latest video blocks in its playback

buffer [11]. Peers periodically exchange buffermaps

with their neighbors in order to determine which

neighbor possesses which video block. Based on its

received buffermaps, a peer can use a pull-based

method to request any of its neighbors to send back

specific video blocks. We let peers pull the missing

blocks with the closest playback time first as suggested

in CoolStreaming [11].

P2P literature [12, 32-33] shows that the hybrid

push-pull method offers a good performance tradeoff

between streaming throughput and fault resilience. Our

model adopts the hybrid push-pull method whereby

after a peer subscribes to a sub-stream by connecting to

one of its neighbors via a single pull request, the

requested neighbor will continue pushing all blocks in

need of the sub-stream to the requested peer. When a

peer continues pushing video blocks to one of its

neighbors, the former and the latter form a parent-child

relationship. For ease of explanation, let Υx,t and Ξx,t

represent the parents and the children of vx,t in Ψx,t,

respectively; and let ˆ
x,t

Υ represent vx,t’s backup-parent

set which is maintained by QuickSwap every τp

seconds. When a parent in Υx,t fails or is inadequate in

satisfying the streaming requirement, vx,t will fail over

to a backup parent in ˆ
x,t

Υ , if any exists, or select a new

parent from Ψx,t by picking the neighbor whose latest

received video blocks can mostly satisfy vx,t’s need. A

peer also refines its neighborship by replacing the least

active neighbor with a peer in its mCache.

The following assumptions and mathematical

symbols are used to establish streaming quality

constraints of QuickSwap protocol. To model peer

churn, we generate join and failure events by the

following procedure. For each join event, a newly

created peer contacts the system’s tracker server to

obtain a list of neighbor candidates, then establishes its

overlay neighbors and begins its live streaming session.

For each failure event, one or multiple existing peers

are randomly chosen to fail. Our model assumes that

peers have synchronized clocks by a time

synchronization technology like Network Time

Protocol, which allows end hosts to be synchronized

within a few milliseconds of Coordinated Universal

Time [34]. When vs is about to send out a video block,

it will record the current time in the header of the video

block as its origin time. Thus, a peer vx,t can evaluate

its PlaybackDelay, denoted by δx,t, by subtracting the

origin time of its received video block from the time

the video block is scheduled to be played. Once a peer

starts playing the live media stream, its PlaybackDelay

approximates a constant value. Because the upload link

is usually much slower than the download link, we

consider peers’ upload capacity be the bottleneck

resource in P2P live streaming. We use μx,t to denote

the free upload capacity of vx,t and use sxy,t and sx,t to

denote the rate of the media stream transmitted from

vx,t to vy,t and the rate of the media stream received by

vx,t, respectively.

4 QuickSwap Protocol Design

This section describes the design of QuickSwap

protocol. In Subsection 4.1, we explain the design

rationale of QuickSwap protocol. We elaborate the

message format and the operation of QuickSwap

protocol in Subsection 4.2 and 4.3, respectively. In

Subsection 4.4, we present the overhead analysis.

4.1 Design Rationale

In a generic mesh-based P2P system Gt = (Vt, Et) as

described in Section 3, our objective is to let each peer

vx,t in Vt employ QuickSwap protocol to periodically

maintain K parents in Ψx,t plus a few qualified backup

parents in ˆ
x,t

Υ for fast fail-over, so at least K out of all

the parents and backup parents are highly likely to

survive and supply the sufficient sub-streams to vx,t

until the next maintenance operation. For convenience

of reference, we term this desired property K-survival

parentship. Before we proceed any further, we first

clarify how QuickSwap picks qualified (backup)

parents for vx,t by two constraints. By the first

constraint, if a peer vy,t is qualified to serve as a parent

of vx,t, vy,t must have adequate free upload capacity to

push a sub-stream to vx,t, which yields:

474 Journal of Internet Technology Volume 19 (2018) No.2

, , ,

ˆ,
y t y t x t

r
r

K
µ ≥ ∀ ∈ (1)

Secondly, vx,t must successfully connect to vy,t via a

single pull request before they can form a parent-child

relationship. Note that this constraint can be tested

directly by vx,t sending a pull request to vy,t and waiting

for the reply. But if, say, a peer wants to quickly

determine if some peer recorded in its mCache could

serve as its parent, then the following approximation

method can be used.

By the pull method, vy periodically sends buffermap

messages to its neighbors. Once vx receives a

buffermap message from vy, vx sends a block request

back to vy. When receiving vx’s block request, vy sends

the requested video block back to vx. We derive an

approximate timing constraint from the above process:

, , , ,

| | | |
3

x t y t xy t x t

y

BM block
B dδ δ δ

μ

+
− ≤ + + ≤

where B is the playback buffer size in unit of seconds,

dxy,t is the end-to-end delay between vx and vy in unit of

seconds, μy,t is vy’s upload capacity in unit of kbps, and

|BM| and |block| are the sizes of a buffermap message

and a video block in unit of kilo-bits, respectively.

Because a slow 500-kbps upload link can transmit a

large 100 kilo-bit video block/buffermap message [12]

in 0.2 seconds and the end-to-end delay is mostly

bounded by 0.2 seconds [35], we approximate the

second constraint as follows for use in practice:

, , , , ,

ˆ1,
x t y t x t y t x t

B rδ δ δ− ≤ ≤ − ∀ ∈ (2)

Next, we derive two additional maintenance

constraints from the properties of K-survival

parentship. The first one states an objective that when a

maintenance operation completes at vx,t, vx,t shall have

K parents to sustain the required streaming rate. The

second one states that when a maintenance operation

completes at vx,t, the peer shall have at least K parents

or backup parents survive until time (t + τp) with a high

probability greater than (1 - ∈). We express these two

maintenance constraints as follows:

, ,

, | |
x t x t
s r r K≥ = (3)

, , ,

ˆ ˆ(| | | | |) , [0,]
r x t t x t t x t p
P r r K r t τ

+Δ +Δ
+ < ≤∈ ∀Δ ∈ (4)

The next two sub-sections will elaborate how peers

maintain K-survival parentship in a distributive manner

through QuickSwap protocol.

4.2 QuickSwap Messages

We define three types of QuickSwap messages:

neighbor-status, backup-status, and backup-request,

for peers to exchange streaming-status information

with one another. Neighbor-status messages are sent

from any arbitrary peer vx,t to its neighbors Ψx,t. A

neighbor-status message contains the 2-tuple

information: PlaybackDelay and FreeCapacity.

Backup-request messages are used by some peer vx,t to

request another peer vy,t to send its backup-status

message to vx,t. When vx,t receives a backup-request

message from vy,t, vx,t will include vy,t in a set ˆ
x,t

Ξ .

Finally, backup-status messages are sent from vx,t to vy,t

if vy,t is in ˆ

x,t
Ξ ; they are also piggybacked on the

membership messages for gossip propagation. A

backup-status message has three fields: PlaybackDelay,

FreeCapacity, and StreamRate. Figure 1 illustrates the

structures of QuickSwap messages, and their fields are

explained below:

(1) PlaybackDelay of vx,t contains a 3-byte value

which records δx,t in unit of milliseconds.

(2) StreamRate of vx,t contains a 2-byte value in unit

of kbps. It is computed by dividing the total size of the

video blocks vx,t has played during the last maintenance

period by τp.

(3) FreeCapacity of vx,t contains a 1-byte value

which records the maximum number of children that

vx,t currently can support.

(a) a neighbor-status message

(b) a backup-status message

(c) a backup-request message

Figure 1. QuickSwap messages

4.3 QuickSwap Protocol

The operation of QuickSwap protocol is

implemented in two processes: information

propagation and neighbor maintenance. Peers can

execute these two processes in parallel with small

computation and communication overheads. By the

process of information propagation, peers periodically

send their streaming-status information in QuickSwap

messages to other peers. The neighbor maintenance

process tries to maintain K parents and a few backup

parents by periodically pre-screening the received

neighbor information and QuickSwap messages. If

violation of Constraint (3) is detected, this process

QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 475

willreplace failed or unqualified parents with backup

parents until the violation is resolved or no more

backup parents can be found.

The pseudo code of information propagation is

exhibited in Figure 2 and explained below. When this

process begins at a peer vx,t, it firstly schedules the next

round of information propagation to begin at time (t +

τp) (Line 1). Then it prepares neighbor-status and

backup-status messages for transmission (Line 2 and 3)

and sends these messages to the corresponding

recipients, Ψx,t and ˆ
x,t

Ξ , respectively (Line 4 to 6). The

membership of ˆ

x,t
Ξ is determined according to the

backup-request messages that vx,t has received since the

last round of information propagation (Line 5). The

backup-status messages are also piggybacked on the

gossip membership messages for gossip propagation

(Line 7). If any change in Ψx,t alters the content of

QuickSwap messages, vx,t will send new QuickSwap

messages to the corresponding recipients.

Figure 2. Pseudo code of information propagation

The neighbor maintenance process consists of two

procedures named backup selection and parent

selection. Figure 3 shows its pseudo code. Backup

selection firstly pre-screens the received backup-status

messages and adds those which meet Constraint (1)

and (2) into the backup-parent set ˆ
x,t

Υ until Constraint

(4) is met (Line 2 to 7). The rest messages are stored in

the mCache (Line 8). This procedure optimizes the

structure of the neighbor set by storing those in (Ψx,t\Υx,t)

which meet Constraint (1) and (2) in the front of the

neighbor set and in the descending order of their

StreamRate (Line 9). The execution time of Line 9 is

trivial because the neighbor set to be sorted contains

100 elements at most.

The parent selection procedure tries to fill the parent

set with the pre-screened backup candidates until

Constraint (3) is met or no more backup candidates can

be found. This procedure is invoked after the execution

of backup selection or at the buffermap timeout every

second. In specifics, this procedure detects violation of

Constraint (3) by checking the counts of how many

video blocks were received from each parent during

the last second (Line 1 to 2). If Constraint (3) is not

met, the Replace or ReplaceQualified function will

replace a failed or unqualified parent with a backup

parent (Line 3), or a neighbor (Line 4 to 5), or a

mCache peer (Line 6 to 7) that is qualified to serve the

sub-stream. At the end, if the neighbor set is still not

full, parent selection will fill the neighbor set with

peers randomly selected from the mCache to retain the

random-mesh property (Line 9). The computation

speed of this procedure is fast due to the pre-processing

of received QuickSwap messages and the optimization

performed by backup selection (for detailed analysis,

see Subsection 4.4).

Figure 3. Pseudo code of neighbor maintenance

4.4 Overhead Analysis

QuickSwap’s communication overhead is mainly

determined by the sizes of the neighbor set and the

backup-parent set. By QuickSwap, neighbors exchange

their neighbor-status messages every τp seconds, so the

communication overhead of this exchange is bounded

by 5m/τp = Θ(m/τp) bytes per second per peer. In regard

to the communication overhead associated with the

backup-parent set, let us consider the worst-case

scenario in which the QuickSwap maintenance

operation needs to prepare K backup parents. Then the

worst-case communication overhead associated with

the backup-status messages is O(m/τp) bytes per second

per peer. Summing up, the overall communication

overhead associated with QuickSwap protocol is

bounded by Θ(m/τp) bytes per second per peer.

Parent selection is the only QuickSwap procedure

which handles the recovery of P2P live streaming

quality on the fly. Parent selection aims to quickly

replace failed or unqualified parents with the pre-

selected backup parents if violation of Constraint (3)

has been detected. In the worst-case scenario, parent

selection has to establish K new parent connections.

476 Journal of Internet Technology Volume 19 (2018) No.2

Therefore, the worst-case time complexity of parent

selection approximates O(K).

Table 1 summarizes the complexity of QuickSwap

protocol in terms of communication and computation

overheads. Note that even if the conventional mCache-

based failure recovery could recover a failed parent in

less than one second, each peer needs to maintain at

least (1/∈) parents to maintain the QoS described in

Constraint (4). For ∈ =1%, it means that each peer

needs at least 100 parents. In comparison, to achieve

the same fail-over probability (1- ∈), QuickSwap

requires each peer to maintain only 20 neighbors plus a

couple of backups.

Table 1. Summary of complexity of QuickSwap

protocol

QuickSwap Overhead Asymptotic Bound

Communication Overhead Θ(m/τp)

- neighbor-status message Θ(m/τp)

- backup-status message O(m/τp)

Computation Overhead (on-the-fly) O(K)

- parent selection O(K)

5 Performance Evaluation

In this section, we conduct simulation experiments

to demonstrate the effectiveness and the efficiency of

QuickSwap failure recovery protocol. The

experimental results are primarily used to: (1) compare

the P2P system’s failure recovery performance with

and without using QuickSwap protocol; and (2) study

the impact of QuickSwap’s parameters on its failure

recovery performance. We first explain the

performance metrics and the setup of our simulation

experiments and then present some representative

results and discuss their implications.

5.1 Performance Metrics

We use the following metrics to evaluate the failure

recovery performance of a mesh-based P2P live

streaming system.

Playback continuity index (PCI). To evaluate video

playback quality perceived by a peer, we define this

metric as the ratio of the number of video blocks that

have been played by the peer during the last second

over the total number of video blocks that should have

been played every second. (PCI ≡ 1) means perfect

video playback without any interruption, and (PCI ≡ 0)

means that the playback buffer has run out of data.

Fail-over time. This metric measures the time elapsed

from the occurrence of a failure event to the moment

when the affected peer has fully recovered its PCI.

Recovery success rate. This is the fraction of the peers

which were affected by the failure event but

subsequently have fully recovered their PCI within a

limited measurement period.

Communication overhead. This measures the amount

of upload bandwidth per peer consumed by exchange

of buffermap or QuickSwap messages.

5.2 Simulation Setup

We use an OMNeT++-based open-source simulation

framework, Oversim [36], to build a packet-level

simulation which captures the functionality of a

generic mesh-based P2P live streaming system and

QuickSwap protocol. The simulation of QuickSwap in

this section only serves as a proof of concept, so we

make a few simplifications in the simulation: (1) we

dismiss the effect of the physical network topology and

consider P2P upload capacity at the network edge be

the only bottleneck to live media streaming; (2) we

simulate the end-to-end propagation delay by a random

value from 10 to 150 milliseconds, which is

appropriate in general cases according to real-world

measurement results [12, 37]; (3) we model the

mCache as a stochastic process which uniformly

samples the active peers in the system every τp seconds

for the purpose of comparison with QuickSwap’s

performance.

The following are the default simulation settings,

similar to those used in [12]. There is one media source

and one tracker server in the system initially. The

media source has an upload capacity of 10 Mbps and

can handle up to 20 children. At the beginning of the

simulation, 1000 peers contact the tracker server and

join the system. The tracker informs peers that the

expected peer lifetime is 10 minutes. Each peer can

maintain at most m = 20 neighbors and has an average

upload capacity of roughly 500 kbps. To simulate the

heterogeneity in peers’ upload capacity, we adopt the

two-class model from [38]; a small fraction, say 1%, of

the peers are classified as super peers, each with an

upload capacity of 1 Mbps, and the remaining peers are

classified as ordinary peers, each with an upload

capacity of 500 kbps. The live media is streamed at r =

450 kbps with K = 10 sub-streams and with a uniform

block size about 10 kilo-bits, which leaves only 50-

kbps free upload capacity per peer to be used for

exchange of buffermap and QuickSwap messages.

Each peer can buffer up to 10 seconds’ content and

start playing the video when the buffer is loaded. The

mCache can store a list of 100 peers. The buffermap

transmission timeout is 1 second, whereas the

QuickSwap maintenance timer is set to τp = 30 seconds.

The streaming-quality parameter ∈ is 1%.

5.3 Simulation Results

For a clean comparison of how well peers recover

from failures with and without using QuickSwap

protocol, in each of these two experiments we sample

30 active peers throughout the simulation run-time,

force a fraction α of their parents to simultaneously

depart from the system, and then measure their

averaged playback continuity index, fail-over time,

recovery success rate, and communication overhead

QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 477

during the subsequent 300-second measurement period.

For an average peer lifetime of 10 minutes, the chance

that a peer loses more than half of its parents in 30

seconds is slim (less than 0.000001), so we use a set of

failure rates, α∈{0.1, 0.2, 0.3, 0.4, 0.5}, to test the P2P

system’s failure recovery performance with and

without using QuickSwap protocol. To prevent the

system from dying out, we let the failed peers re-join

immediately as newly initialized peers. In Figure 4, we

plot the resultant averaged fail-over time and recovery

success rate as to reflect the effectiveness of

QuickSwap protocol. Figure 4 reveals the following

conclusions: (1) The pure mCache mechanism alone

cannot ensure timely failure recovery. Even in

presence of a single parent failure (α = 0.1), the pure

mCache mechanism takes tens of seconds to find a

qualified parent candidate from the mCache. As the

failure rate increases from 0.1 to 0.5, the averaged fail-

over time of the pure mCache mechanism quickly rises

and exceeds 100 seconds while the averaged recovery

success rate quickly drops from 90% to below 20%. (2)

On the other hand, by pre-screening the mCache and

local streaming information, QuickSwap reduces the

task of failure recovery to merely fail-over to the

backup parents. As a result, for α ≤ 0:4, QuickSwap

delivers a remarkable failure-recovery performance

with a 100% recovery success rate and a fail-over time

less than one second. Even for the experiment with (α

= 0.5), QuickSwap still achieves a 90% recovery

success rate and a fail-over time less than one second.

Table 2 makes a comparison between the averaged

communication overheads due to periodic exchange of

QuickSwap and buffermap messages.

To examine the stability of QuickSwap protocol, for

the experiment with (α = 0.5), we plot the averaged

playback continuity index of the peers which were

affected by the parent failures in Figure 5. The sub-

figure on the left shows that the failure recovery

performance of the pure mCache mechanism is poor.

At the end of the 300-second observation period, only

20 percent of the affected peers have been fully

recovered (PCI=1.0), half of the remaining peers have

their playback rate drop to a value between 300 and

400 kbps (PCI = [0:7; 0:9]), and the rest peers have

their playback rate drop to below 300 kbps (PCI = [0:5;

0:7]). The sub-figure on the right shows that our

proposed pre-processing of local streaming information.

From our simulation experiments, QuickSwap was

found to be effective, efficient, and stable up to a 50%

parent-failure QuickSwap protocol delivers a very

stable and timely failure recovery performance - only a

slight “glitch” appears in the curves within the first 10

seconds after the occurrence of the failure event, then

the curves corresponding to PCI= 1:0 and PCI=[0:9;

1:0] quickly stabilize at 90% and 10%, respectively. In

other words, when using QuickSwap protocol, 90% of

the affected peers can fully recover from the failure’s

impact in one second, and the remaining 10% can

restore their playback rate to about 400 kbps in one

second.

Figure 4. Fail-over time and recovery success rate against failure rate α: with (right) and without (left) using

QuickSwap protocol while τp is set to 30 seconds

Table 2. Summary of QuickSwap’s communication overheads

Message Type
Overhead

(τp = 30 s)

Overhead

(τp = 10 s)

QuickSwap Message 1.59 kbps 1.96 kbps

- neighbor-status message 1.41 kbps 1.41 kbps

- backup-status message 0.18 kbps 0.55 kbps

Buffermap Message 43.5 kbps 43.5 kbps

478 Journal of Internet Technology Volume 19 (2018) No.2

Figure 5. Playback continuity of the peers affected by failure event against time: under the system settings of (α, τp)

= (0.5, 30s) with (right) and without (left) using QuickSwap protocol

6 Conclusions

We have shown in this paper that the conventional

mCache mechanism alone cannot ensure timely failure

recovery in an unreliable mesh-based P2P live

streaming system. To enhance P2P live streaming

quality under the churn’s impact, we designed a

lightweight failure recovery protocol named

QuickSwap, which enables peers to quickly recover

from parent failures by exchanging and pre-processing

of local streaming information. From our simulation

experiments, QuickSwap was found to be effective,

efficient, and stable up to a 50% parent-failure rate for

a 1000-node P2P network. Our results reveal that by

QuickSwap protocol, maintaining a couple of

additional backup parents every 30 seconds per peer is

enough to support fast recovery of live streaming

quality for an average of exponentially distributed peer

lifetimes as low as 10 minutes. For a 40% parent-

failure rate or less, QuickSwap delivers a remarkable

failure-recovery performance with a 100% recovery

success rate and a fail-over time less than one second.

QuickSwap’s lightweight streaming-information

exchange protocol together with the proposed neighbor

maintenance and streaming-quality estimation methods

provide a significant performance edge over the

conventional mCache-based failure recovery at a cost

of small communication overhead of less than 2 kbps.

However, when there are fewer high-bandwidth super

peers in the system, finding qualified backup parents

often takes longer. We believe that an excellent

approach to solve this issue is the combination of

QuickSwap protocol and the addition of auxiliary

cloud servers. Thus, exploiting the on-demand resource

provisioning of cloud computing to further enhance

QuickSwap’s failure recovery performance will be part

of our future work.

References

[1] PPTV, http://www.pptv.com

[2] PPstream, http://www.ppstream.com

[3] Sopcast, http://www.sopcast.org

[4] C. D. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, J. E.

Merwe, C. J. Sreenan, Enhanced Streaming Services in a

Content Distribution Network, IEEE Internet Computing, Vol.

5, No. 4, pp. 66-75, July, 2001.

[5] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B.

Weihl, Globally Distributed Content Delivery, IEEE Internet

Computing, Vol. 6, No. 5, pp. 50-58, September, 2002.

[6] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R.

Kleinberg, B. Mancuso, D. Shaw, D. Stodolsky, A Transport

Layer for Live Streaming in a Content Delivery Network,

Proceedings of IEEE, Vol. 92, No. 9, pp. 1408-1419,

September, 2004.

[7] J. Ni, D. H. K. Tsang, Large-scale Cooperative Caching and

Application-level Multicast in Multimedia Content Delivery

Networks, IEEE Communications Magazine, Vol. 43, No. 5,

pp. 98-105, May, 2005.

[8] N. Magharei, R. Rejaie, Understanding Mesh-based Peer-to-

peer Streaming, International Workshop on Network and

Operating Systems Support for Digital Audio and Video,

Newport, Rhode Island, 2006, pp. 56-61.

[9] N. Magharei, R. Rejaie, Y. Guo, Mesh or Multiple-tree: A

Comparative Study of Live P2P Streaming Approaches, 26th

IEEE International Conference on Computer Communications,

Barcelona, Spain, 2007, pp. 1424-1432.

[10] C. Vassilakis, I. Stavrakakis, Minimizing Node Churn in

Peer-to-peer Streaming, Elsevier Computer Communications,

Vol. 33, No. 14, pp. 1598-1614, September, 2010.

[11] X. Zhang, J. Liu, B. Li, T. P. Yum, Coolstreaming/donet: A

Data-driven Overlay Network for Peer-to-peer Live Media

Streaming, IEEE International Conference on Computer

Communications Societies, Miami, FL, 2005, pp. 2102-2111.

[12] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, X. Zhang,

Inside the New Coolstreaming: Principles, Measurements and

Performance Implications, IEEE International Conference on

QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 479

Computer Communications, Phoenix, AZ, 2008, pp. 1705-

1713.

[13] X. Liao, H. Jin, Y. Liu, L. M. Ni, D. Deng, Anysee: Peer-to-

peer Live Streaming, IEEE International Conference on

Computer Communications, Barcelona, Spain, 2006, pp. 1-10.

[14] N. Magharei, R. Rejaie, Prime: Peer-to-peer Receiver-driven

Mesh-based Streaming, IEEE International Conference on

Computer Communications, Barcelona, Spain, 2007, pp.

1415-1423.

[15] Y.-H. Chu, S. G. Rao, S. Seshan, H. Zhang, A Case for End

System Multicast, IEEE Journal on Selected Areas in

Communications, Vol. 20, No. 8, pp. 1456-1472, October,

2002.

[16] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable

Application Layer Multicast, Annual Conference of the ACM

Special Interest Group on Data Communication, Pittsburgh,

PA, 2002, pp. 205-217.

[17] D. A. Tran, K. A. Hua, T. Do, Zigzag: An Efficient Peer-to-

peer Scheme for Media Streaming, IEEE International

Conference on Computer Communications, San Francisco,

CA, 2003, pp. 1283-1292.

[18] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.

Rowstron, A. Singh, Splitstream: High-bandwidth Multicast

in Cooperative Environments, ACM Symposium on Operating

Systems principles, Bolton Landing, NY, 2003, pp. 298-313.

[19] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K.

Sripanidkulchai, Distributing Streaming Media Content Using

Cooperative Networking, International Workshop on Network

and Operating Systems Support for Digital Audio and Video,

Miami, FL, 2002, pp. 177-186.

[20] V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread:

Heterogeneous Unstructured Tree-based Peer-to-peer

Multicast, IEEE International Conference on Network

Protocols, Santa Barbara, CA, 2006, pp. 2-11.

[21] J. Mol, D. Epema, H. Sips, The Orchard Algorithm: Building

Multicast Trees for P2P Video Multicasting without Free-

riding, IEEE Transactions on Multimedia, Vol. 9, No. 8, pp.

1593-1604, December, 2007.

[22] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, J. D.

Kubiatowicz, Exploiting Routing Redundancy via Structured

Peer-to-peer Overlays, IEEE International Conference on

Network Protocols, Atlanta, GA, 2003, pp. 246-257.

[23] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. D. Joseph, J.

D. Kubiatowicz, Tapestry: A Resilient Global-scale Overlay

for Service Deployment, IEEE Journal on Selected Areas in

Communications, Vol. 22, No. 1, pp. 41-53, January, 2004.

[24] S. S. Lam, H. Liu, Failure Recovery for Structured P2P

Networks: Protocol Design and Performance under Churn,

Elsevier Computer Networks, Vol. 50, No. 16, pp. 3083-3104,

November, 2006.

[25] A. J. Ganesh, A. M. Kermarrec, L. Massoulie, Peer-to-peer

Membership Management for Gossip-based Protocols, IEEE

Transactions on Computers, Vol. 52, No. 2, pp. 139-149,

February, 2003.

[26] H. S. Jeon, H. Jung, W. Chun, ID Based Web Browser with

P2P Property, International Conference on Future

Generation Communication and Networking, Jeju Island,

South Korea, 2015, pp. 41-44.

[27] A. Alasaad, S. Gopalakrishnan, V. C. M. Leung, A Hybrid

Approach for Cost-effective Media streaming Based on

Prediction of Demand in Community Networks,

Telecommunication Systems, Vol. 59, No. 3, pp. 329-343,

July, 2015.

[28] K. Birkos, F. Andriopoulou, C. A. Papageorgiou, T.

Dagiuklas, S. Kotsopoulos, Enhanced Failover Mechanisms

for Tree-based Peer-to-Peer Streaming, IEEE International

Conference on Communications, London, UK, 2015, pp.

7024-7029.

[29] I.-J. Wang, G. Lee, S.-L. Peng, Y.-C. Chen, Supporting

Content-Based Music Retrieval in Structured Peer-to-Peer

Overlays, Journal of Internet Technology, Vol. 17, No. 3, pp.

401-407, May, 2016.

[30] Y. Q. Gui, H. K. Choi, Time-Driven Mesh Overlay Network

for Fully Distributed Peer-to-Peer Video-on-Demand

Services, Journal of Internet Technology, Vol. 16, No. 5, pp.

789-800, September, 2015.

[31] S. Kamolphiwong, S. Chanpong, T. Kamolphiwong, QoS

Aware for Peer Selection on P2P Streaming Services, Journal

of Internet Technology, Vol. 15, No. 6, pp. 881-891,

November, 2014.

[32] M. Zhang, J.-G. Luo, L. Zhao, S.-Q. Yang, A Peer-to-peer

Network for Live Media Streaming Using a Push-pull

Approach, ACM International Conference on Multimedia,

Singapore, 2005, pp. 287-290.

[33] A. Ghanbari, H. R. Rabiee, M. Khansari, M. Salehi, Ppm- A

Hybrid Push-pull Mesh-based Peer-to-peer Live Video

Streaming Protocol, International Conference on Computer

Communications and Networks, Munich, Germany, 2012, pp.

1-8.

[34] Network Time Protocol, http://www.ntp.org

[35] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H.

Uijterwaal, P. V. Mieghem, Analysis of End-to-end Delay

Measurements in Internet, Passive and Active Measurement

Workshop, Fort Collins, CO, 2002, pp. 26-33.

[36] Oversim, http://www.oversim.org.

[37] SIGCOMM 2005 Meridian Internet Latency Data Set,

http://www.cs.cornell.edu/people/egs/meridian/data.php.

[38] R. Kumar, Y. Liu, K. Ross, Stochastic Fluid Theory for P2P

Streaming Systems, IEEE International Conference on

Computer Communications, Barcelona, Spain, 2007, pp.

919-927.

Biographies

Chih-Chiang Wang Chih-Chiang

Wang obtained his Ph.D. degree in

Computer Science from North

Carolina State University, USA, in

2007. He is currently a faculty

member in the Department of

Computer Science and Information Engineering at

National Kaohsiung University of Applied Sciences in

480 Journal of Internet Technology Volume 19 (2018) No.2

Taiwan. His research interests are in the general areas

of SDN/NFV systems, overlay networks, and routing

protocols.

Bi-Wei Zhuang Bi-Wei Zhuang is a

master’s student in Department of

Computer Science and Information

Engineering at National Kaohsiung

University of Applied Sciences in

Taiwan. His research interests include

network protocols, peer-to-peer systems, and

distributed systems.

Mon-Yen Luo received his Ph.D.

degree in Computer Science from the

National Sun Yat-Sen University,

Taiwan. He is currently an Associate

Professor at the Department of

Computer Science and Information

Engineering in National Kaohsiung

University of Applied Sciences, Taiwan. His research

interests are in the areas of cloud computing, Internet

technology, network/system management, and

education technology

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

