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Abstract 

In this paper, we propose a failure recovery protocol 

named QuickSwap for mesh-based P2P live streaming 

systems. Unlike the existing mCache-based failure 

recovery scheme, QuickSwap enables peers to quickly 

recover their live streaming quality from neighbor 

failures by exchanging and pre-processing of local 

streaming information. Our contributions in this work are 

two-fold. First, QuickSwap’s lightweight streaming-

information exchange protocol together with the 

proposed neighbor maintenance and streaming-quality 

estimation methods provide a significant performance 

edge over the conventional mCache-based failure 

recovery. Second, we have built a system model for our 

proposal and have evaluated QuickSwap’s performance 

under different system settings through simulation 

methodology. Our results reveal that at a small, 

affordable overhead cost, QuickSwap protocol can 

support fast recovery of live streaming quality with a 

nearly 100% failure recovery success rate and a fail-over 

time less than one second for an average of exponentially 

distributed peer lifetimes as low as 10 minutes. 

Keywords: P2P live media streaming, Fault tolerance, 

Fail-over recovery 

1 Introduction 

P2P live media streaming is becoming an 

increasingly popular Internet application, as evidenced 

by commercial offerings from PPTV [1], PPstream [2], 

Sopcast [3], among others. Unlike traditional Content 

Delivery Networks which rely on dedicated servers to 

deliver live media content [4-7], P2P live media 

streaming utilizes free but unreliable upload capacity 

of end-user participants (peers), thus achieving benefits 

of low deployment cost and high scalability. Peers 

typically form an overlay network, download live 

media content directly from the media source or from 

their overlay neighbors at a required streaming rate, 

and play the received content in approximate 

synchronicity with the source. However, research 

studies [8-10] indicate that inherent peer churn, or the 

dynamics of peers joining and leaving the P2P system, 

can cause peers experiencing frequent neighbor 

failures and unable to download from the remaining 

neighbors at the required rate. Therefore, a key design 

issue in supporting good P2P live streaming quality is 

how to maintain a sufficient supply of live media 

stream to each peer under the impact of peer churn. 

Of interest in this work is the mesh-based P2P live 

streaming scheme used to achieve scalable and robust 

live media delivery in several proposals [11-14]. 

Modern mesh-based P2P designs reduce the churn’s 

impact by dividing the live media stream into K 

multiple sub-streams, K ≥ 1, so each peer can retrieve 

the sub-streams independently from K different 

content-supplier neighbors termed parents. To enhance 

P2P live streaming quality under the churn’s impact, 

our objective is the design of a lightweight fast 

recovery protocol named QuickSwap to periodically 

maintain K parents in each peer’s neighbor set plus a 

few backup parents in reserve for fast fail-over, so at 

least K out of all the parents and backup parents are 

highly likely to survive until the next maintenance 

operation. 

Our proposal is beneficial in two ways. Firstly, 

maintaining a few backup parents is more cost-

effective than maintaining a large set of parents or 

neighbors. Because each parent failure costs a peer an 

instantaneous loss of one K-th of its live media supply, 

the latter approach must use a very large 

parent/neighbor set to keep this loss fraction negligible, 

but doing so will incur expensive neighbor-

communication overhead. In comparison, our results 

show that by QuickSwap protocol, maintaining a 

couple of additional backup parents every 30 seconds 

is enough to support fast recovery of live streaming 

quality with a nearly 100% failure recovery success 

rate and a fail-over time less than one second for an 

average of exponentially distributed peer lifetimes as 

low as 10 minutes. Secondly, QuickSwap can 

efficiently exploit local information to facilitate 

lightweight fast recovery. A mesh-based P2P system 

generally adopts a gossip-like protocol to maintain a 

list of backup neighbors in its membership cache 

(mCache), but our simulation results reveal that it takes 
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a non-trivial random amount of time for a peer to find 

itself a qualified parent from the mCache. In 

comparison, QuickSwap periodically pre-screens local 

mCache information and streaming-status information 

exchanged between neighbors to stock up on a few 

backup parents. By this pre-screening method, 

QuickSwap reduces the task of failure recovery to only 

fail-over to the backups. The contributions of this work 

are two-fold: (1) For achieving fast recovery in mesh-

based P2P live streaming, the design of QuickSwap has 

included a streaming-status protocol for lightweight 

information exchange, a distributive streaming-quality 

estimation method, and a neighbor maintenance 

algorithm to help each peer stock up on a required 

number of parents and backup parents. (2) We have 

built a system model for our proposal and have 

evaluated QuickSwap’s performance under different 

settings through simulation methodology. The balance 

of this paper is organized as follows. In Section 2, we 

survey existing work on P2P live streaming systems 

and fail-over recovery of P2P overlay, and relate them 

to our own. In Section 3, we model a general mesh-

based P2P live streaming system and introduce the 

terminology and the mathematical symbols used 

through this paper. In Section 4, we introduce the 

design rationale, the message format, and the operation 

of QuickSwap protocol. In Section 5, we conduct 

simulation experiments to evaluate QuickSwap’s 

performance under different system settings. We 

finally conclude in Section 6. 

2 Related Work 

2.1 P2P Live Streaming 

Existing P2P live media streaming technologies can 

be broadly classified into either the tree-based or the 

mesh-based. The earlier proposals were largely built 

upon the tree-based overlay where participants are 

organized into one or more end-system multicast trees. 

The media source can deliver the live media stream to 

peers through the tree structure. The tree-based 

schemes can be further classified into the single-tree 

[15-17] or the multiple-tree [18-21]. The single-tree 

has long been criticized for its inefficiency because 

leaves in a single multi-cast tree can barely serve the 

live media to other peers. The multiple-tree improves 

its load balancing by dividing the live media stream 

into multiple sub-streams and disseminating each sub-

stream over an independent multicast tree. Overall 

speaking, the tree-based schemes suffer performance 

degradation and expensive maintenance overheads 

under peer churn. 

The mesh-based data-driven P2P live streaming was 

firstly proposed in [11] and later refined in [12-14]. 

Unlike the tree-based schemes, the mesh-based 

schemes achieve good fault resilience and load 

balancing by employing swarm-like content delivery 

whereby peers form a random mesh overlay and pull 

live media content from their overlay neighbors. 

Large-scale P2P streaming experiments [8, 11-12] have 

validated the feasibility of the mesh-based schemes in 

real systems over the Internet. For these reasons, our 

work is built on the basis of the mesh-based P2P live 

media streaming. 

2.2 Fail-over Recovery of P2P Overlay 

P2P overlay networks can quickly respond to 

neighbor failures by fail-over to backup neighbor 

connections. The history of applying fail-over recovery 

to P2P overlay maintenance can be traced back to the 

early era of structured P2P systems. In [22], Zhao et al. 

use backup routing paths and fault detection techniques 

to achieve fast failure recovery in a fault-resilient 

overlay named Tapestry [23]. The work of [24] 

introduces the property of K-consistent neighbor table 

to improve robustness and failure recovery of 

structured P2P overlays. 

Gossip protocols are commonly used to find good 

neighbor candidates in the mesh overlay with low 

management overhead. In mesh-based P2P live 

streaming [11-12], each peer employs SCAMP-like 

gossip [25] to maintain its mCache, which records a 

partial list of currently active peers in the system as 

backup neighbors. However, the mCache is a 

stochastic result of the underlying gossip propagation, 

so there is no guarantee which peers recorded in the 

mCache are capable of serving the live media stream to 

the peer host. AnySee [13] has a backup path 

management design which uses reverse tracing to find 

better streaming paths in the overlay. In [13], when the 

media source receives a request for reverse tracing, the 

source computes the best streaming path and sends the 

result back to the requester. The work of [26] proposes 

an ID-based Web Browser with ISP-friendly P2P 

content delivery property. In [27], the authors leverage 

under-utilized resources in a community network to 

form caches of files. The work of [28] proposes an 

enhanced failover mechanism for P2P streaming over 

multiple multicast trees, which is considered too rigid 

to be practical. The work of [29] proposes a ternary 

cube model named Hyper-Ternary-Cube to support 

content-based music searches with error tolerance in a 

peer-to-peer overlay. In the work of [30], the authors 

propose a new Time-Driven Mesh (TDM) overlay 

network for peer-to-peer video-on-demand systems. In 

the work of [31], the authors we propose peer selection 

with QoS aware for P2P IPTV service by evaluating 

quality of video content delivered using an end-to-end 

measuring approach. 

Our design of QuickSwap protocol is distinguished 

from the related work in several aspects. QuickSwap 

avoids centralized mechanisms which place the 

computation burden on a single node. Moreover, 

QuickSwap achieves lightweight fast recovery of P2P 

live streaming quality by local information exchange 
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and pre-screening of the received local information. 

3 System Model 

Our model targets at a general mesh-based P2P 

system where a live media stream is originated from a 

media source vs and is being distributed to the peers in 

the system throughout a live broadcast session. The 

live media stream is divided into a sequence of blocks 

of uniform length without any coding, and the video 

blocks are grouped into K logical sub-streams such that 

the i-th sub-stream contains blocks with sequence 

number (i+j．K), where i is a positive integer from 1 to 

K and j is a non-negative integer [12]. The required 

streaming rate for this media stream is r kbps (kilo-bits 

per second). Suppose at a specific moment of time t, Vt 

is the set of active peers in the system and Et is the set 

of overlay connections among peers in Vt. Then the 

overlay of this P2P system at time t resembles an 

undirected graph Gt = (Vt, Et).  

Peers with a direct overlay connection between 

themselves are termed neighbors. Suppose vx,t is an 

active peer vx at time t, then Ψx,t represents the 

neighbors of vx,t. Each peer records a random partial 

list of the currently active peers in its mCache and can 

contact them to establish m neighbors in the overlay. 

Each peer also stores in buffermaps the availability 

information of the latest video blocks in its playback 

buffer [11]. Peers periodically exchange buffermaps 

with their neighbors in order to determine which 

neighbor possesses which video block. Based on its 

received buffermaps, a peer can use a pull-based 

method to request any of its neighbors to send back 

specific video blocks. We let peers pull the missing 

blocks with the closest playback time first as suggested 

in CoolStreaming [11].  

P2P literature [12, 32-33] shows that the hybrid 

push-pull method offers a good performance tradeoff 

between streaming throughput and fault resilience. Our 

model adopts the hybrid push-pull method whereby 

after a peer subscribes to a sub-stream by connecting to 

one of its neighbors via a single pull request, the 

requested neighbor will continue pushing all blocks in 

need of the sub-stream to the requested peer. When a 

peer continues pushing video blocks to one of its 

neighbors, the former and the latter form a parent-child 

relationship. For ease of explanation, let Υx,t and Ξx,t 

represent the parents and the children of vx,t in Ψx,t, 

respectively; and let ˆ
x,t

Υ  represent vx,t’s backup-parent 

set which is maintained by QuickSwap every τp 

seconds. When a parent in Υx,t fails or is inadequate in 

satisfying the streaming requirement, vx,t will fail over 

to a backup parent in ˆ
x,t

Υ , if any exists, or select a new 

parent from Ψx,t by picking the neighbor whose latest 

received video blocks can mostly satisfy vx,t’s need. A 

peer also refines its neighborship by replacing the least 

active neighbor with a peer in its mCache. 

The following assumptions and mathematical 

symbols are used to establish streaming quality 

constraints of QuickSwap protocol. To model peer 

churn, we generate join and failure events by the 

following procedure. For each join event, a newly 

created peer contacts the system’s tracker server to 

obtain a list of neighbor candidates, then establishes its 

overlay neighbors and begins its live streaming session. 

For each failure event, one or multiple existing peers 

are randomly chosen to fail. Our model assumes that 

peers have synchronized clocks by a time 

synchronization technology like Network Time 

Protocol, which allows end hosts to be synchronized 

within a few milliseconds of Coordinated Universal 

Time [34]. When vs is about to send out a video block, 

it will record the current time in the header of the video 

block as its origin time. Thus, a peer vx,t can evaluate 

its PlaybackDelay, denoted by δx,t, by subtracting the 

origin time of its received video block from the time 

the video block is scheduled to be played. Once a peer 

starts playing the live media stream, its PlaybackDelay 

approximates a constant value. Because the upload link 

is usually much slower than the download link, we 

consider peers’ upload capacity be the bottleneck 

resource in P2P live streaming. We use μx,t to denote 

the free upload capacity of vx,t and use sxy,t and sx,t to 

denote the rate of the media stream transmitted from 

vx,t to vy,t and the rate of the media stream received by 

vx,t, respectively. 

4 QuickSwap Protocol Design 

This section describes the design of QuickSwap 

protocol. In Subsection 4.1, we explain the design 

rationale of QuickSwap protocol. We elaborate the 

message format and the operation of QuickSwap 

protocol in Subsection 4.2 and 4.3, respectively. In 

Subsection 4.4, we present the overhead analysis. 

4.1 Design Rationale 

In a generic mesh-based P2P system Gt = (Vt, Et) as 

described in Section 3, our objective is to let each peer 

vx,t in Vt employ QuickSwap protocol to periodically 

maintain K parents in Ψx,t plus a few qualified backup 

parents in ˆ
x,t

Υ  for fast fail-over, so at least K out of all 

the parents and backup parents are highly likely to 

survive and supply the sufficient sub-streams to vx,t 

until the next maintenance operation. For convenience 

of reference, we term this desired property K-survival 

parentship. Before we proceed any further, we first 

clarify how QuickSwap picks qualified (backup) 

parents for vx,t by two constraints. By the first 

constraint, if a peer vy,t is qualified to serve as a parent 

of vx,t, vy,t must have adequate free upload capacity to 

push a sub-stream to vx,t, which yields: 
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Secondly, vx,t must successfully connect to vy,t via a 

single pull request before they can form a parent-child 

relationship. Note that this constraint can be tested 

directly by vx,t sending a pull request to vy,t and waiting 

for the reply. But if, say, a peer wants to quickly 

determine if some peer recorded in its mCache could 

serve as its parent, then the following approximation 

method can be used. 

By the pull method, vy periodically sends buffermap 

messages to its neighbors. Once vx receives a 

buffermap message from vy, vx sends a block request 

back to vy. When receiving vx’s block request, vy sends 

the requested video block back to vx. We derive an 

approximate timing constraint from the above process: 
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where B is the playback buffer size in unit of seconds, 

dxy,t is the end-to-end delay between vx and vy in unit of 

seconds, μy,t is vy’s upload capacity in unit of kbps, and 

|BM| and |block| are the sizes of a buffermap message 

and a video block in unit of kilo-bits, respectively. 

Because a slow 500-kbps upload link can transmit a 

large 100 kilo-bit video block/buffermap message [12] 

in 0.2 seconds and the end-to-end delay is mostly 

bounded by 0.2 seconds [35], we approximate the 

second constraint as follows for use in practice: 
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Next, we derive two additional maintenance 

constraints from the properties of K-survival 

parentship. The first one states an objective that when a 

maintenance operation completes at vx,t, vx,t shall have 

K parents to sustain the required streaming rate. The 

second one states that when a maintenance operation 

completes at vx,t, the peer shall have at least K parents 

or backup parents survive until time (t + τp) with a high 

probability greater than (1 - ∈). We express these two 

maintenance constraints as follows: 
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The next two sub-sections will elaborate how peers 

maintain K-survival parentship in a distributive manner 

through QuickSwap protocol. 

4.2 QuickSwap Messages 

We define three types of QuickSwap messages: 

neighbor-status, backup-status, and backup-request, 

for peers to exchange streaming-status information 

with one another. Neighbor-status messages are sent 

from any arbitrary peer vx,t to its neighbors Ψx,t. A 

neighbor-status message contains the 2-tuple 

information: PlaybackDelay and FreeCapacity. 

Backup-request messages are used by some peer vx,t to 

request another peer vy,t to send its backup-status 

message to vx,t. When vx,t receives a backup-request 

message from vy,t, vx,t will include vy,t in a set ˆ
x,t

Ξ . 

Finally, backup-status messages are sent from vx,t to vy,t 

if vy,t is in ˆ

x,t
Ξ ; they are also piggybacked on the 

membership messages for gossip propagation. A 

backup-status message has three fields: PlaybackDelay, 

FreeCapacity, and StreamRate. Figure 1 illustrates the 

structures of QuickSwap messages, and their fields are 

explained below: 

(1) PlaybackDelay of vx,t contains a 3-byte value 

which records δx,t in unit of milliseconds. 

(2) StreamRate of vx,t contains a 2-byte value in unit 

of kbps. It is computed by dividing the total size of the 

video blocks vx,t has played during the last maintenance 

period by τp. 

(3) FreeCapacity of vx,t contains a 1-byte value 

which records the maximum number of children that 

vx,t currently can support. 

 

(a) a neighbor-status message 

 

(b) a backup-status message 

 

(c) a backup-request message 

Figure 1. QuickSwap messages 

4.3 QuickSwap Protocol 

The operation of QuickSwap protocol is 

implemented in two processes: information 

propagation and neighbor maintenance. Peers can 

execute these two processes in parallel with small 

computation and communication overheads. By the 

process of information propagation, peers periodically 

send their streaming-status information in QuickSwap 

messages to other peers. The neighbor maintenance 

process tries to maintain K parents and a few backup 

parents by periodically pre-screening the received 

neighbor information and QuickSwap messages. If 

violation of Constraint (3) is detected, this process 
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willreplace failed or unqualified parents with backup 

parents until the violation is resolved or no more 

backup parents can be found. 

The pseudo code of information propagation is 

exhibited in Figure 2 and explained below. When this 

process begins at a peer vx,t, it firstly schedules the next 

round of information propagation to begin at time (t + 

τp) (Line 1). Then it prepares neighbor-status and 

backup-status messages for transmission (Line 2 and 3) 

and sends these messages to the corresponding 

recipients, Ψx,t and ˆ
x,t

Ξ , respectively (Line 4 to 6). The 

membership of ˆ

x,t
Ξ  is determined according to the 

backup-request messages that vx,t has received since the 

last round of information propagation (Line 5). The 

backup-status messages are also piggybacked on the 

gossip membership messages for gossip propagation 

(Line 7). If any change in Ψx,t alters the content of 

QuickSwap messages, vx,t will send new QuickSwap 

messages to the corresponding recipients. 

 

Figure 2. Pseudo code of information propagation 

The neighbor maintenance process consists of two 

procedures named backup selection and parent 

selection. Figure 3 shows its pseudo code. Backup 

selection firstly pre-screens the received backup-status 

messages and adds those which meet Constraint (1) 

and (2) into the backup-parent set ˆ
x,t

Υ until Constraint 

(4) is met (Line 2 to 7). The rest messages are stored in 

the mCache (Line 8). This procedure optimizes the 

structure of the neighbor set by storing those in (Ψx,t\Υx,t) 

which meet Constraint (1) and (2) in the front of the 

neighbor set and in the descending order of their 

StreamRate (Line 9). The execution time of Line 9 is 

trivial because the neighbor set to be sorted contains 

100 elements at most. 

The parent selection procedure tries to fill the parent 

set with the pre-screened backup candidates until 

Constraint (3) is met or no more backup candidates can 

be found. This procedure is invoked after the execution 

of backup selection or at the buffermap timeout every 

second. In specifics, this procedure detects violation of 

Constraint (3) by checking the counts of how many 

video blocks were received from each parent during 

the last second (Line 1 to 2). If Constraint (3) is not 

met, the Replace or ReplaceQualified function will 

replace a failed or unqualified parent with a backup 

parent (Line 3), or a neighbor (Line 4 to 5), or a 

mCache peer (Line 6 to 7) that is qualified to serve the 

sub-stream. At the end, if the neighbor set is still not 

full, parent selection will fill the neighbor set with 

peers randomly selected from the mCache to retain the 

random-mesh property (Line 9). The computation 

speed of this procedure is fast due to the pre-processing 

of received QuickSwap messages and the optimization 

performed by backup selection (for detailed analysis, 

see Subsection 4.4). 

 

Figure 3. Pseudo code of neighbor maintenance 

4.4 Overhead Analysis 

QuickSwap’s communication overhead is mainly 

determined by the sizes of the neighbor set and the 

backup-parent set. By QuickSwap, neighbors exchange 

their neighbor-status messages every τp seconds, so the 

communication overhead of this exchange is bounded 

by 5m/τp = Θ(m/τp) bytes per second per peer. In regard 

to the communication overhead associated with the 

backup-parent set, let us consider the worst-case 

scenario in which the QuickSwap maintenance 

operation needs to prepare K backup parents. Then the 

worst-case communication overhead associated with 

the backup-status messages is O(m/τp) bytes per second 

per peer. Summing up, the overall communication 

overhead associated with QuickSwap protocol is 

bounded by Θ(m/τp) bytes per second per peer. 

Parent selection is the only QuickSwap procedure 

which handles the recovery of P2P live streaming 

quality on the fly. Parent selection aims to quickly 

replace failed or unqualified parents with the pre-

selected backup parents if violation of Constraint (3) 

has been detected. In the worst-case scenario, parent 

selection has to establish K new parent connections. 
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Therefore, the worst-case time complexity of parent 

selection approximates O(K).  

Table 1 summarizes the complexity of QuickSwap 

protocol in terms of communication and computation 

overheads. Note that even if the conventional mCache-

based failure recovery could recover a failed parent in 

less than one second, each peer needs to maintain at 

least (1/∈) parents to maintain the QoS described in 

Constraint (4). For ∈ =1%, it means that each peer 

needs at least 100 parents. In comparison, to achieve 

the same fail-over probability (1- ∈ ), QuickSwap 

requires each peer to maintain only 20 neighbors plus a 

couple of backups.  

Table 1. Summary of complexity of QuickSwap 

protocol 

QuickSwap Overhead Asymptotic Bound

Communication Overhead Θ(m/τp) 

- neighbor-status message Θ(m/τp) 

- backup-status message O(m/τp) 

Computation Overhead (on-the-fly) O(K) 

- parent selection O(K) 

5 Performance Evaluation 

In this section, we conduct simulation experiments 

to demonstrate the effectiveness and the efficiency of 

QuickSwap failure recovery protocol. The 

experimental results are primarily used to: (1) compare 

the P2P system’s failure recovery performance with 

and without using QuickSwap protocol; and (2) study 

the impact of QuickSwap’s parameters on its failure 

recovery performance. We first explain the 

performance metrics and the setup of our simulation 

experiments and then present some representative 

results and discuss their implications. 

5.1 Performance Metrics 

We use the following metrics to evaluate the failure 

recovery performance of a mesh-based P2P live 

streaming system. 

Playback continuity index (PCI). To evaluate video 

playback quality perceived by a peer, we define this 

metric as the ratio of the number of video blocks that 

have been played by the peer during the last second 

over the total number of video blocks that should have 

been played every second. (PCI ≡ 1) means perfect 

video playback without any interruption, and (PCI ≡ 0) 

means that the playback buffer has run out of data. 

Fail-over time. This metric measures the time elapsed 

from the occurrence of a failure event to the moment 

when the affected peer has fully recovered its PCI. 

Recovery success rate. This is the fraction of the peers 

which were affected by the failure event but 

subsequently have fully recovered their PCI within a 

limited measurement period. 

Communication overhead. This measures the amount 

of upload bandwidth per peer consumed by exchange 

of buffermap or QuickSwap messages. 

5.2 Simulation Setup 

We use an OMNeT++-based open-source simulation 

framework, Oversim [36], to build a packet-level 

simulation which captures the functionality of a 

generic mesh-based P2P live streaming system and 

QuickSwap protocol. The simulation of QuickSwap in 

this section only serves as a proof of concept, so we 

make a few simplifications in the simulation: (1) we 

dismiss the effect of the physical network topology and 

consider P2P upload capacity at the network edge be 

the only bottleneck to live media streaming; (2) we 

simulate the end-to-end propagation delay by a random 

value from 10 to 150 milliseconds, which is 

appropriate in general cases according to real-world 

measurement results [12, 37]; (3) we model the 

mCache as a stochastic process which uniformly 

samples the active peers in the system every τp seconds 

for the purpose of comparison with QuickSwap’s 

performance. 

The following are the default simulation settings, 

similar to those used in [12]. There is one media source 

and one tracker server in the system initially. The 

media source has an upload capacity of 10 Mbps and 

can handle up to 20 children. At the beginning of the 

simulation, 1000 peers contact the tracker server and 

join the system. The tracker informs peers that the 

expected peer lifetime is 10 minutes. Each peer can 

maintain at most m = 20 neighbors and has an average 

upload capacity of roughly 500 kbps. To simulate the 

heterogeneity in peers’ upload capacity, we adopt the 

two-class model from [38]; a small fraction, say 1%, of 

the peers are classified as super peers, each with an 

upload capacity of 1 Mbps, and the remaining peers are 

classified as ordinary peers, each with an upload 

capacity of 500 kbps. The live media is streamed at r = 

450 kbps with K = 10 sub-streams and with a uniform 

block size about 10 kilo-bits, which leaves only 50-

kbps free upload capacity per peer to be used for 

exchange of buffermap and QuickSwap messages. 

Each peer can buffer up to 10 seconds’ content and 

start playing the video when the buffer is loaded. The 

mCache can store a list of 100 peers. The buffermap 

transmission timeout is 1 second, whereas the 

QuickSwap maintenance timer is set to τp = 30 seconds. 

The streaming-quality parameter ∈ is 1%. 

5.3 Simulation Results 

For a clean comparison of how well peers recover 

from failures with and without using QuickSwap 

protocol, in each of these two experiments we sample 

30 active peers throughout the simulation run-time, 

force a fraction α of their parents to simultaneously 

depart from the system, and then measure their 

averaged playback continuity index, fail-over time, 

recovery success rate, and communication overhead 
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during the subsequent 300-second measurement period. 

For an average peer lifetime of 10 minutes, the chance 

that a peer loses more than half of its parents in 30 

seconds is slim (less than 0.000001), so we use a set of 

failure rates, α∈{0.1, 0.2, 0.3, 0.4, 0.5}, to test the P2P 

system’s failure recovery performance with and 

without using QuickSwap protocol. To prevent the 

system from dying out, we let the failed peers re-join 

immediately as newly initialized peers. In Figure 4, we 

plot the resultant averaged fail-over time and recovery 

success rate as to reflect the effectiveness of 

QuickSwap protocol. Figure 4 reveals the following 

conclusions: (1) The pure mCache mechanism alone 

cannot ensure timely failure recovery. Even in 

presence of a single parent failure (α = 0.1), the pure 

mCache mechanism takes tens of seconds to find a 

qualified parent candidate from the mCache. As the 

failure rate increases from 0.1 to 0.5, the averaged fail-

over time of the pure mCache mechanism quickly rises 

and exceeds 100 seconds while the averaged recovery 

success rate quickly drops from 90% to below 20%. (2) 

On the other hand, by pre-screening the mCache and 

local streaming information, QuickSwap reduces the 

task of failure recovery to merely fail-over to the 

backup parents. As a result, for α ≤ 0:4, QuickSwap 

delivers a remarkable failure-recovery performance 

with a 100% recovery success rate and a fail-over time 

less than one second. Even for the experiment with (α 

= 0.5), QuickSwap still achieves a 90% recovery 

success rate and a fail-over time less than one second. 

Table 2 makes a comparison between the averaged 

communication overheads due to periodic exchange of 

QuickSwap and buffermap messages. 

To examine the stability of QuickSwap protocol, for 

the experiment with (α = 0.5), we plot the averaged 

playback continuity index of the peers which were 

affected by the parent failures in Figure 5. The sub-

figure on the left shows that the failure recovery 

performance of the pure mCache mechanism is poor. 

At the end of the 300-second observation period, only 

20 percent of the affected peers have been fully 

recovered (PCI=1.0), half of the remaining peers have 

their playback rate drop to a value between 300 and 

400 kbps (PCI = [0:7; 0:9]), and the rest peers have 

their playback rate drop to below 300 kbps (PCI = [0:5; 

0:7]). The sub-figure on the right shows that our 

proposed pre-processing of local streaming information. 

From our simulation experiments, QuickSwap was 

found to be effective, efficient, and stable up to a 50% 

parent-failure QuickSwap protocol delivers a very 

stable and timely failure recovery performance - only a 

slight “glitch” appears in the curves within the first 10 

seconds after the occurrence of the failure event, then 

the curves corresponding to PCI= 1:0 and PCI=[0:9; 

1:0] quickly stabilize at 90% and 10%, respectively. In 

other words, when using QuickSwap protocol, 90% of 

the affected peers can fully recover from the failure’s 

impact in one second, and the remaining 10% can 

restore their playback rate to about 400 kbps in one 

second. 

 
Figure 4. Fail-over time and recovery success rate against failure rate α: with (right) and without (left) using 

QuickSwap protocol while τp is set to 30 seconds 

Table 2. Summary of QuickSwap’s communication overheads 

Message Type 
Overhead 

(τp = 30 s) 

Overhead 

(τp = 10 s) 

QuickSwap Message 1.59 kbps 1.96 kbps 

- neighbor-status message 1.41 kbps 1.41 kbps 

- backup-status message 0.18 kbps 0.55 kbps 

Buffermap Message 43.5 kbps 43.5 kbps 
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Figure 5. Playback continuity of the peers affected by failure event against time: under the system settings of (α, τp) 

= (0.5, 30s) with (right) and without (left) using QuickSwap protocol 

 

6 Conclusions 

We have shown in this paper that the conventional 

mCache mechanism alone cannot ensure timely failure 

recovery in an unreliable mesh-based P2P live 

streaming system. To enhance P2P live streaming 

quality under the churn’s impact, we designed a 

lightweight failure recovery protocol named 

QuickSwap, which enables peers to quickly recover 

from parent failures by exchanging and pre-processing 

of local streaming information. From our simulation 

experiments, QuickSwap was found to be effective, 

efficient, and stable up to a 50% parent-failure rate for 

a 1000-node P2P network. Our results reveal that by 

QuickSwap protocol, maintaining a couple of 

additional backup parents every 30 seconds per peer is 

enough to support fast recovery of live streaming 

quality for an average of exponentially distributed peer 

lifetimes as low as 10 minutes. For a 40% parent-

failure rate or less, QuickSwap delivers a remarkable 

failure-recovery performance with a 100% recovery 

success rate and a fail-over time less than one second. 

QuickSwap’s lightweight streaming-information 

exchange protocol together with the proposed neighbor 

maintenance and streaming-quality estimation methods 

provide a significant performance edge over the 

conventional mCache-based failure recovery at a cost 

of small communication overhead of less than 2 kbps. 

However, when there are fewer high-bandwidth super 

peers in the system, finding qualified backup parents 

often takes longer. We believe that an excellent 

approach to solve this issue is the combination of 

QuickSwap protocol and the addition of auxiliary 

cloud servers. Thus, exploiting the on-demand resource 

provisioning of cloud computing to further enhance 

QuickSwap’s failure recovery performance will be part 

of our future work. 

 

 

References 

[1] PPTV, http://www.pptv.com 

[2] PPstream, http://www.ppstream.com 

[3] Sopcast, http://www.sopcast.org 

[4] C. D. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, J. E. 

Merwe, C. J. Sreenan, Enhanced Streaming Services in a 

Content Distribution Network, IEEE Internet Computing, Vol. 

5, No. 4, pp. 66-75, July, 2001. 

[5] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B. 

Weihl, Globally Distributed Content Delivery, IEEE Internet 

Computing, Vol. 6, No. 5, pp.  50-58, September, 2002. 

[6] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. 

Kleinberg, B. Mancuso, D. Shaw, D. Stodolsky, A Transport 

Layer for Live Streaming in a Content Delivery Network, 

Proceedings of IEEE, Vol. 92, No. 9, pp. 1408-1419, 

September, 2004. 

[7] J. Ni, D. H. K. Tsang, Large-scale Cooperative Caching and 

Application-level Multicast in Multimedia Content Delivery 

Networks, IEEE Communications Magazine, Vol. 43, No. 5, 

pp. 98-105, May, 2005. 

[8] N. Magharei, R. Rejaie, Understanding Mesh-based Peer-to-

peer Streaming, International Workshop on Network and 

Operating Systems Support for Digital Audio and Video, 

Newport, Rhode Island, 2006, pp. 56-61. 

[9] N. Magharei, R. Rejaie, Y. Guo, Mesh or Multiple-tree: A 

Comparative Study of Live P2P Streaming Approaches, 26th 

IEEE International Conference on Computer Communications, 

Barcelona, Spain, 2007, pp. 1424-1432. 

[10] C. Vassilakis, I. Stavrakakis, Minimizing Node Churn in 

Peer-to-peer Streaming, Elsevier Computer Communications, 

Vol. 33, No. 14, pp. 1598-1614, September, 2010. 

[11] X. Zhang, J. Liu, B. Li, T. P. Yum, Coolstreaming/donet: A 

Data-driven Overlay Network for Peer-to-peer Live Media 

Streaming, IEEE International Conference on Computer 

Communications Societies, Miami, FL, 2005, pp. 2102-2111. 

[12] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, X. Zhang, 

Inside the New Coolstreaming: Principles, Measurements and 

Performance Implications, IEEE International Conference on 



QuickSwap: A Lightweight Fast Recovery Protocol for Mesh-based P2P Live Streaming 479 

 

Computer Communications, Phoenix, AZ, 2008, pp. 1705-

1713. 

[13] X. Liao, H. Jin, Y. Liu, L. M. Ni, D. Deng, Anysee: Peer-to-

peer Live Streaming, IEEE International Conference on 

Computer Communications, Barcelona, Spain, 2006, pp. 1-10. 

[14] N. Magharei, R. Rejaie, Prime: Peer-to-peer Receiver-driven 

Mesh-based Streaming, IEEE International Conference on 

Computer Communications, Barcelona, Spain, 2007, pp. 

1415-1423. 

[15] Y.-H. Chu, S. G. Rao, S. Seshan, H. Zhang, A Case for End 

System Multicast, IEEE Journal on Selected Areas in 

Communications, Vol. 20, No. 8, pp. 1456-1472, October, 

2002. 

[16] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable 

Application Layer Multicast, Annual Conference of the ACM 

Special Interest Group on Data Communication, Pittsburgh, 

PA, 2002, pp. 205-217. 

[17] D. A. Tran, K. A. Hua, T. Do, Zigzag: An Efficient Peer-to-

peer Scheme for Media Streaming, IEEE International 

Conference on Computer Communications, San Francisco, 

CA, 2003, pp. 1283-1292. 

[18] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. 

Rowstron, A. Singh, Splitstream: High-bandwidth Multicast 

in Cooperative Environments, ACM Symposium on Operating 

Systems principles, Bolton Landing, NY, 2003, pp. 298-313. 

[19] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K. 

Sripanidkulchai, Distributing Streaming Media Content Using 

Cooperative Networking, International Workshop on Network 

and Operating Systems Support for Digital Audio and Video, 

Miami, FL, 2002, pp. 177-186. 

[20] V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: 

Heterogeneous Unstructured Tree-based Peer-to-peer 

Multicast, IEEE International Conference on Network 

Protocols, Santa Barbara, CA, 2006, pp. 2-11. 

[21] J. Mol, D. Epema, H. Sips, The Orchard Algorithm: Building 

Multicast Trees for P2P Video Multicasting without Free-

riding, IEEE Transactions on Multimedia, Vol. 9, No. 8, pp. 

1593-1604, December, 2007. 

[22] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, J. D. 

Kubiatowicz, Exploiting Routing Redundancy via Structured 

Peer-to-peer Overlays, IEEE International Conference on 

Network Protocols, Atlanta, GA, 2003, pp. 246-257. 

[23] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. D. Joseph, J. 

D. Kubiatowicz, Tapestry: A Resilient Global-scale Overlay 

for Service Deployment, IEEE Journal on Selected Areas in 

Communications, Vol. 22, No. 1, pp. 41-53, January, 2004. 

[24] S. S. Lam, H. Liu, Failure Recovery for Structured P2P 

Networks: Protocol Design and Performance under Churn, 

Elsevier Computer Networks, Vol. 50, No. 16, pp. 3083-3104, 

November, 2006. 

[25] A. J. Ganesh, A. M. Kermarrec, L. Massoulie, Peer-to-peer 

Membership Management for Gossip-based Protocols, IEEE 

Transactions on Computers, Vol. 52, No. 2, pp. 139-149, 

February, 2003. 

[26] H. S. Jeon, H. Jung, W. Chun, ID Based Web Browser with 

P2P Property, International Conference on Future 

Generation Communication and Networking, Jeju Island, 

South Korea, 2015, pp. 41-44. 

[27] A. Alasaad, S. Gopalakrishnan, V. C. M. Leung, A Hybrid 

Approach for Cost-effective Media streaming Based on 

Prediction of Demand in Community Networks, 

Telecommunication Systems, Vol. 59, No. 3, pp. 329-343, 

July, 2015. 

[28] K. Birkos, F. Andriopoulou, C. A. Papageorgiou, T. 

Dagiuklas, S. Kotsopoulos, Enhanced Failover Mechanisms 

for Tree-based Peer-to-Peer Streaming, IEEE International 

Conference on Communications, London, UK, 2015, pp. 

7024-7029. 

[29] I.-J. Wang, G. Lee, S.-L. Peng, Y.-C. Chen, Supporting 

Content-Based Music Retrieval in Structured Peer-to-Peer 

Overlays, Journal of Internet Technology, Vol. 17, No. 3, pp. 

401-407, May, 2016. 

[30] Y. Q. Gui, H. K. Choi, Time-Driven Mesh Overlay Network 

for Fully Distributed Peer-to-Peer Video-on-Demand 

Services, Journal of Internet Technology, Vol. 16, No. 5, pp. 

789-800, September, 2015. 

[31] S. Kamolphiwong, S. Chanpong, T. Kamolphiwong, QoS 

Aware for Peer Selection on P2P Streaming Services, Journal 

of Internet Technology, Vol. 15, No. 6, pp. 881-891, 

November, 2014. 

[32] M. Zhang, J.-G. Luo, L. Zhao, S.-Q. Yang, A Peer-to-peer 

Network for Live Media Streaming Using a Push-pull 

Approach, ACM International Conference on Multimedia, 

Singapore, 2005, pp. 287-290. 

[33] A. Ghanbari, H. R. Rabiee, M. Khansari, M. Salehi, Ppm- A 

Hybrid Push-pull Mesh-based Peer-to-peer Live Video 

Streaming Protocol, International Conference on Computer 

Communications and Networks, Munich, Germany, 2012, pp. 

1-8. 

[34] Network Time Protocol, http://www.ntp.org 

[35] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. 

Uijterwaal, P. V. Mieghem, Analysis of End-to-end Delay 

Measurements in Internet, Passive and Active Measurement 

Workshop, Fort Collins, CO, 2002, pp. 26-33. 

[36] Oversim, http://www.oversim.org. 

[37] SIGCOMM 2005 Meridian Internet Latency Data Set, 

http://www.cs.cornell.edu/people/egs/meridian/data.php. 

[38] R. Kumar, Y. Liu, K. Ross, Stochastic Fluid Theory for P2P 

Streaming Systems, IEEE International Conference on 

Computer Communications,  Barcelona, Spain, 2007, pp. 

919-927. 

Biographies 

Chih-Chiang Wang Chih-Chiang 

Wang obtained his Ph.D. degree in 

Computer Science from North 

Carolina State University, USA, in 

2007. He is currently a faculty 

member in the Department of 

Computer Science and Information Engineering at 

National Kaohsiung University of Applied Sciences in 



480 Journal of Internet Technology Volume 19 (2018) No.2 

 

Taiwan. His research interests are in the general areas 

of SDN/NFV systems, overlay networks, and routing 

protocols. 

 

Bi-Wei Zhuang Bi-Wei Zhuang is a 

master’s student in Department of 

Computer Science and Information 

Engineering at National Kaohsiung 

University of Applied Sciences in 

Taiwan. His research interests include 

network protocols, peer-to-peer systems, and 

distributed systems. 

 

Mon-Yen Luo received his Ph.D. 

degree in Computer Science from the 

National Sun Yat-Sen University, 

Taiwan. He is currently an Associate 

Professor at the Department of 

Computer Science and Information 

Engineering in National Kaohsiung 

University of Applied Sciences, Taiwan. His research 

interests are in the areas of cloud computing, Internet 

technology, network/system management, and 

education technology 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


