
Designing VNT Candidates Robust Against Network Failures 279

Designing VNT Candidates Robust Against

Network Failures

Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata*

Graduate School of Information Science and Technology Osaka University, Japan

{a-onur, arakawa, murata}@ist.osaka-u.ac.jp

*Corresponding Author: Onur Alparslan; E-mail: a-onur@ist.osaka-u.ac.jp

DOI: 10.3966/160792642018011901027

Abstract

Future-generation networks are expected to be more

robust to network failures. However, as each physical

link carries multiple lightpaths when a VNT (Virtual

Network Topology) is applied on an optical network,

even the failure of a single link may tear down many

links in the VNT, which can slow down the network or

make it unusable. In this paper, we propose an algorithm

called MFLDA (Minimum Flow Logical topology Design

Algorithm) for designing VNT candidates that can

accommodate a wide range of traffic patterns. Moreover,

we show that the variant called MFLDA-FO (MFLDA

with Failure Optimization) can design VNT candidates

that have lower probability of congestion right after the

failure of multiple nodes compared to HLDA, which is

one of the best performing VNT design algorithms.

Furthermore, we show that when these VNT candidates

are used as attractors in an attractor selection algorithm,

which was modeled on biological systems and proposed

as a robust and self-adaptive control for future-generation

networks, the average time to recover from difficult

failure scenarios is less than the attractors designed by

HLDA. Unlike HLDA, our VNT design algorithms and

the attractor selection algorithm does not require the

traffic matrix and the topology information after failure.

Keywords: Virtual network topology design, Attractor

selection, Network failure

1 Introduction

The global Internet traffic is growing at a

tremendous rate. Currently, the only scalable way to

carry such a large amount of traffic is using optical

networks. The wavelength division multiplexing

(WDM) allows accommodating high amount of IP

traffic on fast optical networks and can span longer

distances than electrical cabling, so it is a promising

solution to handle the fast-growing Internet traffic

demanding more and more capacity. However, due to

the difficulties of high granularity switching at ultra-

high speed of optical networks, processing and

switching at optical nodes have important limitations.

An optical fiber may carry hundreds of wavelengths,

but it is difficult to terminate each wavelength and

moreover process and switch each packet carried on

each wavelength at each node. However, new services

and applications such as Internet of Things (IoT) and

Video-on-demand (VOD) are emerging on the Internet,

which cause fast changes in the traffic matrices and

patterns. While optical wavelengths can carry tremendous

amount of data, the connectivity limitations of optical

nodes and wavelengths make it difficult to adapt the

network to the fast-changing traffic.

As one of the aims of the future-generation networks

is adaptability and robustness to changing and

fluctuating traffic, there are many works in the

literature to solve this problem. A common solution is

constructing a Virtual Network Topology (VNT) in

which only the physical nodes that are the transmitter

and receiver edges of a lightpath are shown as

connected by a link. Modifying the VNT by changing

the placement of lightpaths between nodes allows

adapting the network for changing traffic conditions

and new application layer services. A poorly

configured VNT may cause congestion on some links

even when there is enough capacity.

The works in the literature for designing VNTs may

be classified into two groups as online and off-line

approaches [1-2] in general. The off-line approaches

create VNTs suitable for a set of possible traffic

demand matrices. However, Internet traffic is difficult

to predict as new applications and services, which can

dramatically change the traffic, appear in time [3].

Moreover, it is difficult to predict the traffic changes

due to node/link failures, cyber-attacks etc. The online

approaches sample the traffic demand periodically and

design a new VNT for the current environment [4].

However, they require up-to-date traffic demand

matrix information, which can be challenging to

retrieve. Even if it is possible to retrieve traffic matrix

information, it usually takes time to correctly estimate

it, which may take too long to solve a congestion in a

short time. For example, Gencata and Mukherjee [4]

assumed that traffic demand is changing gradually with

a period of more than several hours, so it may not be

good for solving congestion due to traffic spikes.

280 Journal of Internet Technology Volume 19 (2018) No.1

Moreover, some of them cannot handle traffic changes

due to node or link failures and some of them need to

know detailed information like exact place of failures

in the topology in order to work.

The future-generation networks are expected to be

robust to network failures and disasters. Likewise,

living organisms are well-known to adapt to the

changes in the environment such as disasters. Thanks

to the powerful adaptation mechanisms stored in genes

of living organisms, life continues on earth in spite of

big and unexpected changes in the environment.

Therefore, several methods based on modeling

biological systems have been developed. It is shown

that an attractor selection mechanism is adopted by

biological systems to adapt to the environment and

recover in order to increase the probability of survival.

Therefore, an attractor selection control mechanism

based on modeling the biological systems was

proposed for future-generation optical networks in

order to recover from topology failures and find a VNT

that minimizes the maximum lightpath load in the

network [5]. Unlike most on-line methods in the

literature, attractor selection does not require a priori

knowledge like the place of failed nodes/links or

detailed information about the current environment like

the up-to-date traffic matrix information. Attractor

selection requires only the maximum lightpath

utilization level, which can be retrieved quickly by

Simple Network Management Protocol (SNMP) [6].

Using the maximum load level in the network as a

simple feedback, the attractor selection algorithm also

recovers the network from high congestion after

multiple node/link failures. Many papers on VNT

failures in the literature concentrate only on preventing

the disconnection of the remaining nodes in the VNT

after a failure. Moreover, most off-line analytical

approaches in the literature propose protection against

failure of only one or two random nodes/links at a time

or a regional failure. On the other hand, attractor

selection can solve complex problems with randomly

distributed multiple node/link failures, which may

occur due to a large scale distributed denial of service

(DDoS) cyber-attack.

In attractor selection, the system tries to find an

equilibrium point by evolving around the attractors

where the conditions are known or expected to be

preferable. The attractor selection algorithm uses a list

of VNTs as attractors. Koizumi et al. [7] showed that

even when random VNTs are used attractors, attractor

selection has better performance than I-MLTDA

algorithm [8] in general. However, when the attractor

VNTs were not suitable for the network, it took a long

time to find a solution in some cases. The first work on

designing VNT candidates as attractors was in [9],

which showed that its attractors further decrease the

convergence time compared to attractors selected in a

random manner. While the algorithm is good for

designing VNTs with low utilization for a wide range

of traffic matrices, it does not take the physical

topology into account. Therefore, lightpaths may end

up passing through many hops in the physical topology.

Long route length increases the probability that a

lightpath passes through a failed node or link and tears

down in case of a network failure. Moreover, the

algorithm does not provide backup paths against big

changes in the utilization distribution in the network

due to failures.

In this paper, which is an extended version of [10],

we propose an algorithm called MFLDA (Minimum

Flow Logical topology Design Algorithm) for

designing VNT candidates that can accommodate a

wider range of traffic patterns compared to a random

VNT. Moreover, we present an extended version called

MFLDA-FO (MFLDA with Failure Optimization),

which is more robust against traffic changes after

failure of multiple nodes. We show that right after a

network failure a VNT designed by MFLDA-FO has a

lower congestion probability compared to a VNT

designed HLDA (Heuristic Logical topology Design

Algorithm) [2], which is one of the best performing

VNT design algorithms in the literature. Furthermore,

we show that when the VNT candidates designed by

MFLDA-FO are used as attractors in an attractor

selection algorithm, the average time to recover from

difficult failure scenarios is less than using the

attractors designed by HLDA. Unlike HLDA, our VNT

design algorithms and the attractor selection algorithm

does not require the traffic matrix and the topology

information after the failure. In [10], the simulations

were carried out on Waxman [11] topology only. In

this paper, we present new simulation results using

Erdős–Rényi (ER) [12] topology to show the

performance of the proposed algorithm. Moreover, we

describe the proposed algorithm in more detail with

more discussions.

The paper is organized as follows. In Section 2, we

present the algorithm for designing VNT candidates. In

Section 3, we present the architecture of attractor

selection. Section 4 shows the simulation results and

discusses the performance of the architecture. Section

5 concludes the paper.

2 Problem Formulation

An optical network architecture consists of optical

routers connected with fiber links. The nodes are

connected with dedicated virtual circuits called

lightpaths. Optical routers can switch the lightpaths by

optical cross-connects (OXC) and receive/transmit

lightpaths through receivers and transmitters. As the

number of receivers and transmitters in a node is

limited, it is not possible establish lightpaths on each

wavelength between adjacent nodes. If a lightpath is

not terminated at a node, the lightpath can only pass-

through it towards the output fiber selected by the

OXC. These pass-through nodes can be neglected in

Designing VNT Candidates Robust Against Network Failures 281

the routing table of the IP network. Therefore, a virtual

network topology can be drawn by considering the

lightpaths as direct links between their receiver and

transmitter nodes. Ohba et al. [9] showed that it is

possible to design VNT candidates that give low

maximum link utilization for a wide range of traffic

matrices by optimizing the placement of lightpaths

between nodes heuristically. However, the VNTs

designed by Ohba et al. were not robust against

network failures as it did not take the physical topology

into account [9]. In this paper, our aim is to design

VNTs robust against both wide range of traffic

matrices and network failures, so it is more challenging.

Let’s denote the traffic from a source to destination

node as a flow. The flows are carried over the

lightpaths established on the physical topology. The

probability of a congestion on a lightpath increases

with the increasing number of flows passing through.

In order to minimizes the number of flows on the

lightpaths, we propose an algorithm called MFLDA

(Minimum Flow Logical topology Design Algorithm)

for designing VNT candidates that can accommodate a

wide range of traffic patterns. Moreover, we extend it

to MFLDA-FO (MFLDA with Failure Optimization)

variant, which minimizes the number of flows on the

lightpaths after node failures.

The pseudocode code of the main algorithm is

shown in Figure 1. First, the parameters are initialized

and the initial VNT is established as shown in Figure 2.

In Figure 2, n denotes the number of nodes in the

network. The number of transmitters and receivers

available on each node are stored in tra and rec arrays.

When choosing the node pairs for new lightpaths, we

give priority to the nodes that have highest number of

available transmitters/receivers, so we apply a token

based priority scheme. The transmitter and receiver

tokens on each node are stored in token_tra and

token_rec arrays and first initialized to the number of

transmitters and receivers available. In the FOR loop

on line 10, initially the VNT is set to the physical

topology by establishing lightpaths on the fibers

between adjacent nodes. The reason is that as the

number of physical hops that a lightpath traverses

increases, the probability of being hit by a failure

increases, so priority is given to establish single hop

lightpaths. In case the nodal degree is higher than the

number of transmitters/receivers in a node, priority is

given to the links that make the topology connected.

This initial VNT serves as a substrate for adding new

lightpaths. If network failures are not considered, it is

also possible to use a simple random ring topology

passing through all nodes as an initial VNT. The

important point is that the initial VNT should be fully

connected, so all nodes are reachable. On line 19 and

in the next FOR loop, the number of tokens are

normalized. As an example, assume that there are four

nodes in a network and after initial VNT is created on

line 10, they have 3, 4, 1 and 4 transmitters and

receivers left, respectively. After normalization, their

token count becomes 0, 1, -3 and 1. Only the nodes

with tokens more than zero are allowed to establish a

lightpath, so the second and the fourth nodes are

candidates.

1: INITIALIZE()

2: repeat

3: COLLECTDATA()

4: stop_pass ← 0

5: sort pass[f][src][dst] in descending order with

corresponding (f, src, dst)

6: repeat

7: repeat

8: get next (f, src, dst) in the sorted pass list

9: set the routing table to routing[f]

10: for each node pair src2 and dst2 whose route

includes the lightpath from src to dst do

11: impact[src2][dst2] ← decrease[f]

[src2][dst2] * (hop[f][src2][dst2] - 1)

12: end for

13: sort impact[src2][dst2] in descending order

with corresponding (src2, dst2)

14: repeat

15: get next (src2, dst2) in the sorted impact list

16: if token_tra[src2] > 0 AND token_rec[dst2] >

0 AND tra[src2] > 0 AND rec[dst2] > 0 then

17: establish a lightpath from src2 to dst2

18: token_tra[src2]--

19: token_rec[dst2]--

20: tra[src2]--

21: rec[dst2]--

22: stop_pass ← 2

23: end if

24: until stop_pass is 2 OR impact list is empty

25: if stop_pass is 0 AND pass list is empty then

26: if MIN(token_tra) ≤ 0 OR MIN(token_rec)

≤ 0 then

27: token_tra++

28: token_rec++

29: stop_pass ← 1

30: else

31: stop_all ← 1

32: end if

33: end if

34: until stop_pass > 0

35: re-initialize pass to last sorted list

36: until stop_all is 1 OR stop_pass is 2

37: until stop_all is 1

Figure 1. The main algorithm

In order to select and add new lightpaths, the

algorithm starts the main loop on line 2 in Figure 1.

Each time a new lightpath is established, the algorithm

returns to here. In order to select the s-d pairs for

establishing lightpaths, the algorithm collects data on

the current logical topology as shown in Figure 3. In

order to analyze the effect of node failures, the

282 Journal of Internet Technology Volume 19 (2018) No.1

1: function INITIALIZE

2: n ← number of nodes

3: stop_all ← 0

4: for k ← 0 to n do

5: tra[k] ← number of transmitters on k

6: rec[k] ← number of receivers on k

7: token_tra[k] ← number of transmitters on k

8: token_rec[k] ← number of receivers on k

9: end for

10: for each fiber from src to dst on physical

topology do

11: if tra[src] > 0 AND rec[dst] > 0 then

12: establish a lightpath from src to dst

13: tra[src]--

14: rec[dst]--

15: token_tra[src]--

16: token_rec[dst]--

17: end if

18: end for

19: token ← MIN(MAX(token_tra), MAX(token_rec))

20: for k ← 0 to n do

21: token_tra[k] ← token_tra[k] - token + 1

22: token_rec[k] ← token_rec[k] - token + 1

23: end for

24: return n, tra, rec, token_tra, token_rec, stop_all

and initial VNT

25: end function

Figure 2. The initialization of parameters and setting

the initial VNT

1: function COLLECTDATA

2: for f ← ID of nodes that may fail and finally n do

3: if f < n then

4: simulate failure of node f

5: end if

6: routing[f] ← new routing table

7: for each node pair src and dst do

8: hop[f][src][dst] ← number of hops from src to

dst

9: end for

10: for each lightpath from src to dst do

11: pass[f][src][dst] ← number of s-d pairs on

lightpath from src to dst

12: end for

13: for each node pair src and dst without a direct

lightpath do

14: decrease[f][src][dst] ← number of node pairs

whose hop count will decrease if a lightpath

is established from src to dst

15: end for

16: if f < n then

17: node f recovers

18: end if

19: end for

20: return routing, hop, pass, decrease

21: end function

Figure 3. Collecting data on the current logical topology

algorithm simulates single node failures in the FOR

loop on line 2 in Figure 3 and stores the data about the

lightpath stats after the failure. The f variable is set to

ID of the nodes that may fail. In the last loop, the stats

are calculated for the VNT without any failure by

setting f to n, which prevents node failures. As

MFLDA creates a VNT without considering any

failures, f is set to only n in MFLDA. The algorithm is

called MFLDA-FO, when f includes the set of nodes

that may fail. This allows the created VNT to be more

robust against the failures at these nodes. If f loops

over IDs of all nodes, the algorithm creates a VNT that

is robust against all possible node failures.

As a first stat, the routing algorithm is run to

determine the paths on line 6 in Figure 3. When there

are multiple possible paths, the selection varies with

the implementation of the algorithm, so the exact

behavior of the routing algorithm must be known.

Using the routing information, the hop count

distribution among s-d (source-destination) pairs is

calculated on line 7. Then the number of total number

of s-d pairs on each lightpath is calculated on line 10

and stored in the array pass. On line 13, we find the

number of node pairs whose hop count will decrease if

a lightpath is established between a s-d node pair and

store it as a metric for this s-d pair in an array denoted

by decrease. While it is easy to estimate these stats in

shortest path routing, it may be difficult with some

routing algorithms. Their estimation in different

routing algorithms is left as a future work.

After collecting the stats, the main algorithm starts

selecting the s-d pairs for establishing lightpaths in

Figure 1. Among the possible candidates, the algorithm

gives priority to the ones that will decrease the number

of s-d pairs on the lightpaths that are carrying the

highest number of s-d pairs. Therefore, the values in

the pass array is sorted in descending order on line 5.

By the loop on line 7, the algorithm loops over pass list

with corresponding (f,src,dst) in order to decrease the

number of s-d pairs on the lightpath from src to dst

with the failure scenario f, until a new lightpath is

established or pass is empty. In order to decrease the s-

d pair count on the selected lightpath, the algorithm

tries to establish a direct lightpath between one of the

s-d pairs on this lightpath. Therefore, the algorithm

creates a list of s-d pairs passing through this lightpath

and stores them in the array impact with an impact

factor metric, which is the amount of decrease in total

hop count between all node pairs after a lightpath is

established between this s-d pair. After sorting the

impact factor list in descending order, the algorithm

tries to establish a lightpath among s-d pairs in the list

in a loop starting on line 14. Before establishing the

lightpath, the algorithm checks whether the lightpath

satisfies the conditions like the node pair has enough

number of tokens, transmitter and receivers. It may

also need to satisfy other conditions like the maximum

number of wavelengths on the fibers depending on the

Designing VNT Candidates Robust Against Network Failures 283

architecture.

While not mandatory, checking whether the

congestion probability decreases after establishing the

lightpath can further decrease the congestion

probability. Even though each new lightpath decreases

the average hop count in the network, in some cases

the new lightpath may end up carrying many s-d pairs

and become a bottleneck further increasing the

congestion probability. If the distribution of the traffic

matrix is known, the non-congestion probability for a

given of s-d pairs on a lightpath can be estimated by a

simulation. As a comparison metric, the overall non-

congestion probability of a VNT can be roughly

approximated by multiplying the non-congestion

probability of all lightpaths and the lightpath is

established only if it decreases. While the metric

usually has a high deviation from the real non-

congestion probability of the VNT due to the high

correlation among adjacent lightpaths, our simulations

revealed that it is useful for comparison and provides

some small improvement in the congestion probability

of the designed VNT.

If a new lightpath is established, the algorithm stops

trying establishing new lightpaths and goes back to the

beginning of the main loop on the line 2. When pass is

empty and no new lightpaths are established, the

algorithm checks the tokens of all nodes. If there is a

node with token less than one, the algorithm increases

the tokens of all nodes by one so that more nodes can

establish a lightpath and re-runs the loop after re-

initializing the pass array to the last sorted list.

Otherwise, the algorithm stops and outputs the

designed VNT. As many (f,src,dst) give the same value

in pass and impact arrays, it is possible create different

VNTs by random shuffling the order of (f,src,dst) sets

before sorting the pass and impact arrays.

Due to the token based architecture, it is difficult to

state an order of complexity to the algorithm. As a

reference, it takes around 30 minutes to design a VNT

on a Waxman topology with 100 nodes and 400 optical

fibers with 16 transmitters and receivers per node,

using a not-so-optimized single-threaded C++ simulator

on a single core of Intel 3960x CPU. Speed improvement

of several orders of magnitude seems possible using an

optimized and multi-threaded program. For example,

CollectData function of MFLDA-FO in Figure 3 can

be run O(n) faster than a single-threaded program by

processing each iteration of the FOR loop on line 2

using a different CPU core by parallel programming.

3 Attractor Selection Control

In biological systems, the interaction between

metabolic reaction network and gene regulatory

network controls the growth of cells. The gene

regulatory network produces the proteins necessary for

the cell growth. Each gene has an expression level,

which shows the level of protein production. In the

metabolic reaction network, proteins use the nutrition

in the environment and produce the substances

necessary for the growth. The concentration of

substances necessary for growth is used as a feedback

by the gene regulatory network about the current

environment. High level of concentration means that

the conditions are preferable, which implies an

attractor state, so the deterministic behavior drives the

biological system to continue using the current state.

On the other hand, if the concentration of substances

necessary for growth is low, the growth level decreases,

which causes the system to be driven by stochastic

behavior. In order to find a new attractor state for high

growth, the system starts to change the expression

levels randomly. The system returns back to

deterministic behavior only after a new set of

expression levels that is giving high growth rate is

found. In other words, the system is driven by two

behaviors, i.e., deterministic and stochastic. When the

system conditions are preferable, the deterministic

behavior drives the system to converge to an attractor.

If the conditions are not preferable, the stochastic

behavior dominates the system. The system searches

for a new attractor by randomly changing the state by

adding noise. When the system finds a new operating

point with preferable conditions, deterministic

behavior takes over the control again. The system is

controlled by the current state as a feedback.

3.1 Analytical Model in Biological Systems

The expression level of n genes, which shows the

level of protein production, is represented as

1 2
(, , ,)

n
x x x x= … . The protein production level is

calculated by

 ()= .

dx
g x

dt
α η⋅ + (1)

In the equation, α is the growth rate showing the

concentration of required substances. g(x) gives the

deterministic behavior. The η is the Gaussian noise

term showing the strength of stochastic behavior. If the

concentration of required substances is low, α

decreases, so η dominates the equation, which causes

the gene regulatory network to do a random walk by

fluctuations. Ref. [13] gives a detailed description of

metabolic reaction network.

3.2 VNT Control

As the traffic conditions and the physical topology

may change in time, a VNT reconfiguration control is

necessary to adapt to the changes. A single VNT may

not be able to give low utilization after each change in

traffic pattern or each change in topology after a failure.

In a biological system, the gene regulatory network

adapts to the changing environment by taking the

growth rate as a feedback as a result of the metabolic

reaction network. In our work, we tried to adapt to the

284 Journal of Internet Technology Volume 19 (2018) No.1

changing IP network conditions by reconfiguring the

VNT, so we interpret the VNT as the gene regulatory

network and the IP network as the metabolic reaction

network. The growth rate in biological system shows

the how much preferable the conditions are. Our aim is

to minimize the congestion on the highest utilized

lightpath in order to decrease the packet drop rates and

buffering delays. As high packet drop rates and

buffering delays mean bad conditions, we chose the

maximum lightpath utilization as a growth rate metric.

When node/link failures occur, the capacity of

available lightpaths may no longer enough to carry the

traffic and cause high congestion in the IP network.

The VNT control method, takes it as a feedback and

reconfigures the VNT until the maximum utilization in

the IP network decreases below a threshold value. The

outline of the algorithm is as follows:

(1) Measure and receive the maximum lightpath

utilization by SNMP

(2) Convert the lightpath utilization information to

the growth rate feedback. Using the growth rate

feedback, calculate the new expression level of genes.

(3) Establish or tear lightpaths in order to

reconfigure VNT according to the new expression level

vector.

4. Use the newly established VNT until next iteration.

3.3 Analytical Model of VNT Control

Each lightpath is controlled by a gene, so {i}-th

lightpath has an expression level of xi, which is

calculated by

 = .
i

ij j i

j

dx
f W x x

dt
α θ η

⎛ ⎞⎛ ⎞
⋅ ⋅ − − +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ (2)

The α is the growth rate, which is calculated

according the maximum utilization level in the IP

network as a feedback. The η is the Gaussian noise

term showing the strength of stochastic behavior. If the

maximum utilization level is high, α decreases, so η

dominates the equation, which causes the VNT to

change randomly to find a new attractor. The rate of

change in the expression level by the deterministic

behavior is given by the sigmoidal regulation function

 () = tanh(),f z zµ (3)

where µ is the gain parameter. W is the regulatory

matrix, which shapes the system to convergence to an

attractor state when the growth rate is high. θ is the

threshold value for expression level.

We use the SNMP to retrieve the maximum

utilization level umax in the IP network to calculate α. It

may be possible to use other metrics, but utilization is

commonly used in many papers as a metric in the

literature [2], [4]. umax is converted to α by

1

= ,
1 (())

max
exp u

α
δ ζ+ ⋅ −

 (4)

where δ is the gradient and the ζ is the threshold

utilization parameter. When umax equals to the

threshold, α is 0.5. When the umax surpasses ζ, the value

of α converges to zero, which means low growth rate.

In this case, the noise term η dominates the control and

the VNT changes randomly, until the VNT control

finds a VNT with low umax. After each iteration, the xi

values are sorted from highest to lowest and the

corresponding lightpaths are established in this order.

The regulatory matrix W is a Hopfield neural

network containing a set of possible attractors [14-16].

We use it as an associative memory to store the

attractors by using orthogonal projection. Let’s

assume that we have m attractors, where attractor k has

the VNT expression vector () ()

1() = (, ,)k k

i
x k x x… . The

VNT lightpaths are coded according bipolar coding by

setting xi to 1 if the lightpath is established and -1

otherwise. Bipolar coding is used because bipolar

vectors have a greater probability of being orthogonal

than binary vectors [16]. Let X be a matrix whose rows

are the attractors. First we calculate the pseudo-inverse

matrix X+. Then the regulatory matrix is calculated by

simply

 = .W X X
+ (5)

In order to store the attractors, it is also possible to

use Hebbian learning, which has lower computation

complexity than orthogonal projection. However, we

used orthogonal projection because it has a higher

memory capacity than Hebbian learning [17-18].

The convergence time to a solution depends on the

performance of the attractors used. In the previous

works on attractor selection, random VNTs were used

as attractors. In this paper, we propose using the VNT

candidates designed by MFLDA and MFLDA-FO as

initial attractors in the regulatory matrix.

4 Performance Evaluation

We evaluated the performance of the proposed

algorithm against network failures by a simulation

study. In [10], only the simulation results on Waxman

model [11] topology were shown. In this paper we also

show the simulation results on Erdős–Rényi (ER)

model [12] topology. Two physical topologies with

Waxman and ER models were designed by BRITE tool

[19] with default parameters. Both Waxman and ER

topologies had 100 nodes and 400 optical fibers, one

optical fiber for each direction. The number of

transmitters and receivers in a node was limited to 16.

As the transmitter/receiver count was the main limit,

there were enough number of wavelengths on a fiber to

carry the lightpaths. The amount of traffic per s-d node

pair had a Log Normal (-0.5,1) distribution. In order to

show the effect of traffic intensity, the traffic matrix

was multiplied by k. A VNT was marked as congested

if the utilization of one of its lightpaths was more than

Designing VNT Candidates Robust Against Network Failures 285

50%. The attractor selection algorithm parameters were

µ = 10, δ = 50, and ζ = 0.5. The variance n of the noise

η was 0.15. Shortest path routing is applied on both

physical and logical topologies.

We compared four different VNT candidate sets.

The VNT candidates denoted by MFLDA were

designed by the proposed algorithm without

optimization for node failure, by setting f to only n on

line 2 of the pseudocode, which prevents an

optimization for failures. The VNT candidates denoted

by MFLDA-FO were designed by the proposed

algorithm with optimization for possible node failures

by looping f from 0 to n. For comparison, the VNT

candidates denoted by RLDA (Random Logical

Topology Design Algorithm) and HLDA (Heuristic

Logical topology Design Algorithm) [2] were also

simulated. In RLDA, the VNTs were created by

establishing lightpaths among randomly chosen node

pairs. In HLDA, the VNTs were created by

establishing lightpaths among the s-d pairs with the

highest traffic according to the traffic matrix. In order

to maximize the performance of HLDA in failure

scenarios, HLDA is applied to the topology after

failure with the knowledge of the failed nodes.

Therefore, the VNTs created by HLDA were specially

designed for the topology after failure. On the other

hand, we simulate MFLDA and MFLDA-FO under

harsher conditions without providing the traffic matrix

information and the place of failed nodes. As the exact

place of failed nodes are not known to the network,

when the transmitters/receivers of failed lightpaths

become idle, these idle transmitters/receivers were

used for establishing new lightpaths among randomly

chosen node pairs.

Each VNT candidate set was simulated with 500.000

traffic matrices and failure patterns to estimate their

congestion probability. A set of 10 VNTs were

designed by MFLDA-FO and MFLDA for both ER

and Waxman topologies. In this paper, the random

number generator seed, which is used for generating

VNTs, was different from [10], so a different set of

VNTs was used in all Waxman topology simulations

than in [10]. In each simulation, one of the 10 designed

VNT candidates was randomly selected and simulated.

In order to increase the randomness, a different VNT

was used by RLDA in each simulation. As HLDA

optimizes the VNT for a given traffic matrix and failed

node set, again a different VNT was designed and used

by HLDA in each simulation. When a node fails, the

lightpaths passing through its fibers fail at the same

time. Instead of rerouting the failed lightpaths, the

traffic on the failed lightpaths is rerouted to other

available lightpaths like in [7].

Figure 4 shows the congestion probability for ER

topology in Figure 4(a) and Waxman topology in

Figure 4(b) when there was no node failure. The x-axis

is the traffic multiplier and the y-axis is the congestion

probability. As HLDA and RLDA are independent of

the physical topology, they gave the same result in

both graphs. While MFLDA-FO and MFLDA design

VNTs specific to the physical topology, they gave very

close results in ER and Waxman topologies in Figure 4.

Compared to other algorithms, HLDA gave the

lowest probability of congestion. As HLDA has the

traffic matrix information and it designs a specific

VNT for each traffic matrix, this is an expected result.

However, our aim is to design VNT candidates without

traffic matrix information. In Figure 4, MFLDA gave

lower congestion probability than MFLDA-FO. The

reason is that the failure optimization causes the VNT

to include backup paths against possible failure

scenarios. These lightpaths may not be so useful when

there is no failure, so the congestion probability of

MFLDA-FO was a bit higher than MFLDA. RLDA

gave the highest congestion probability.

Figure 5 and Figure 6 show that when 5 and 10

nodes failed, MFLDA-FO gave lower congestion

probability than the other algorithms unless the traffic

was too high in both ER and Waxman topologies.

When 5 nodes failed and the traffic intensity k was

0.005 in ER topology, the congestion probability of

MFLDA-FO was more than three times lower than

HLDA. When 5 nodes failed and k was 0.0077 in the

Waxman topology, the blocking probability of

MFLDA-FO was half of HLDA. While HLDA had

both the traffic matrix and failed node list information,

it could not create direct lightpaths among some of the

s-d pairs with high traffic, whose lightpath route pass

through failed nodes. As HLDA does not provide any

optimization for these s-d pairs, they may end up using

multiple lightpaths and concentrate on some lightpaths

and cause congestion. On the other hand, MFLDA-FO

optimizes the VNT by taking failures into account to

prevent hot-spots, so it gave lower congestion

probability unless the traffic was too high. As many

lightpaths become unavailable and the characteristics

of the topology greatly changes after multiple node

failures, the optimizations by MFLDA no longer work,

so the VNTs designed MFLDA gave similar

congestion probability to RLDA.

While MFLDA-FO had lower probability of

congestion right after failure, not all possible failure

scenarios could be solved by VNT optimization only.

In such cases, attractor selection mechanism allows

solving complex failure scenarios after some iterations.

However, the convergence time to a solution depends

on the performance of the attractors used. Figure 7

shows the cumulative distribution function (CDF) of

the number of iterations by attractor selection

algorithm until it finds a VNT that has maximum

lightpath utilization less than 50% for ER and Waxman

topologies. The VNT candidates designed by MFLDA-

FO, MFLDA, HLDA and RLDA were set as the

attractors of the attractor selection algorithm and the

initial VNT. Each attractor set was simulated with

2000 different failure patterns and traffic matrices. The

286 Journal of Internet Technology Volume 19 (2018) No.1

Designing VNT Candidates Robust Against Network Failures 287

traffic intensity k was set to 0.0083. Five randomly

chosen nodes failed before the first iteration. The x-

axis is the number of iterations until convergence. As

seen in the figure, the attractors designed by our

MFLDA-FO gave much faster convergence than both

RLDA and HLDA algorithms, even though HLDA had

both the traffic matrix and failed node list information

that were not available to MFLDA-FO. Around 10% of

the simulations could not converge as there was no

solution or the solution domain was too small.

5 Conclusion

In this paper, we proposed an algorithm called

MFLDA for designing VNTs that can accommodate a

wider range of traffic patterns without using traffic

matrix information in order to increase the adaptability

and robustness of optical networks to the changing and

fluctuating traffic due to emerging applications and

services in future-generation networks. We also

presented an extended version called MFLDA-FO to

design VNTs robust against congestion due the traffic

changes after network failures. The simulation results

showed that the VNT candidates designed by MFLDA-

FO can accommodate a wider range of traffic both

before and right after a failure of multiple nodes. As

not all possible failure scenarios could be solved by

applying a single optimized VNT, an attractor selection

control mechanism proposed for future-generation

optical networks was applied. The simulations showed

that the converge time is faster when VNTs designed

by MFLDA-FO are used in the attractor selection

algorithm, compared to the attractors designed by

HLDA algorithm. Unlike HLDA, our VNT design

algorithms and the attractor selection algorithms do not

require the traffic matrix information and the failed

node list.

While it is easy to estimate the routing stats used in

our algorithm when shortest path routing is applied, it

may be difficult with some routing algorithms. As a

future work, we will investigate the possible

implementation issues with other routing algorithms

and evaluate their performance.

Acknowledgment

This research was supported in part by Grant-in-Aid

for Scientific Research (A) 15H01682 of the Japan

Society for the Promotion of Science (JSPS) in Japan.

References

[1] B. Mukherjee, D. Banerjee, S. Ramamurthy, B. Mukherjee,

Some Principles for Designing a Wide-area WDM Optical

Network, IEEE/ACM Transactions on Networking, Vol. 4, No.

5, pp. 684-696, October, 1996.

[2] R. Ramaswami, K. Sivarajan, Design of Logical Topologies

for Wavelength-routed Optical Networks, IEEE Journal on

Selected Areas in Communications, Vol. 14, No. 5, pp. 840-

851, June, 1996.

[3] Y. Liu, H. Zhang, W. Gong, D. Towsley, On The Interaction

Between Overlay Routing and Underlay Routing, IEEE 24th

Annual Joint Conference of the IEEE Computer and

Communications Societies, Miami, Florida, 2005, pp. 2543-

2553.

[4] A. Gencata, B. Mukherjee, Virtual-topology Adaptation for

WDM Mesh Networks Under Dynamic Traffic, IEEE/ACM

Transactions on Networking, Vol. 11, No. 2, pp. 236-247,

April, 2003.

[5] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto,

M. Murata, Adaptive Virtual Network Topology Control

Based on Attractor Selection, Journal of Lightwave

Technology, Vol. 28, No. 11, pp. 1720-1731, June, 2010.

[6] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S.

Fernandes, D. Sadok, A Survey on Internet Traffic Identification,

IEEE Communications Surveys Tutorials, Vol. 11, No. 3, pp.

37-52, July, 2009.

[7] Y. Koizumi, S. Arakawa, S. Kamamura, D. Shimazaki, T.

288 Journal of Internet Technology Volume 19 (2018) No.1

Miyamura, A. Hiramatsu, M. Murata, Adaptability of Virtual

Network Topology Control Based on Attractor Selection

Against Multiple Node Failures, 18th OptoElectronics and

Communications Conference / Photonics in Switching, Kyoto,

Japan, 2013.

[8] D. Banerjee, B. Mukherjee, Wavelength-routed Optical

Networks: Linear Formulation, Resource Budgeting Tradeoffs,

and a Reconfiguration Study, IEEE/ACM Transactions on

Networking, Vol. 8, pp. 598-607, 1997.

[9] T. Ohba, S. Arakawa, Y. Koizumi, M. Murata, Scalable

Design Method of Attractors in Noise-induced Virtual

Network Topology Control, Journal of Optical Communications

and Networking, Vol. 7, No. 9, pp. 851-863, September, 2015.

[10] O. Alparslan, S. Arakawa, M. Murata, Designing VNT

Candidates Robust Against Congestion due to Node Failures,

IEEE High Performance Switching and Routing, Tokyo,

Japan, 2016.

[11] B. M. Waxman, Routing of Multipoint Connections, IEEE

Journal on Selected Areas in Communications, Vol. 6, No. 9,

pp. 1617-1622, December, 1988.

[12] P. Erdos, A. Renyi, On The Evolution of Random Graphs,

Publications of The Mathematical Institute of The Hungarian

Academy of Sciences, Vol. 5, No. 1, pp. 17-61, 1960.

[13] A. Kashiwagi, I. Urabe, K. Kaneko, T. Yomo, Adaptive

Response of a Gene Network to Environmental Changes by

Fitness-induced Attractor Selection, PLoS ONE, Vol. 1, No. 1,

p. e49, December, 2006.

[14] J. J. Hopfield, Neurons with Graded Response Have

Collective Computational Properties Like Those of Two-state

Neurons, National Academy of Sciences, Vol. 81, No. 10, pp.

3088-3092, May, 1984.

[15] Y. Baram, Orthogonal Patterns in Binary Neural Networks,

Technical Memorandum 100060, NASA, 1988.

[16] R. Rojas, Neural Networks: A Systematic Introduction,

Springer-Verlag, 1996.

[17] J. J. Hopfield, Neural Networks and Physical Systems with

Emergent Collective Computational Abilities, National

Academy of Sciences of the United States of America, Vol. 79,

No. 8, pp. 2554-2558, April, 1982.

[18] Y. S. Hanay, Y. Koizumi, S. Arakawa, M. Murata, Virtual

Network Topology Control with Oja and Apex Learning,

24th International Teletraffic Congress, Krakow, Poland,

2012, p. 47.

[19] A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: An

Approach to Universal Topology Generation, Modeling,

Analysis and Simulation of Computer and Telecommunication

Systems, Washington, DC, 2001, pp. 346-353.

Biographies

Onur Alparslan received Ph.D. degree

in information science and technology

in 2008 from Osaka University, Japan.

He is currently a Specially Appointed

Assistant Professor at Graduate School

of Information Science and Technology,

Osaka University, Japan. He is a senior member of the

IEEE and a member of the IEICE.

Shin’ichi Arakawa received his

M.E. and D.E. in informatics and

mathematical science from Osaka

University in 2000 and 2003,

respectively. He has been an Associate

Professor at the Graduate School of

Information Science and Technology,

Osaka University since October 2011. He is a member

of the IEEE and the IEICE.

Masayuki Murata received M.E. and

D.E. in information science and

technology from Osaka University in

1984 and 1988. He is a Professor at

Graduate School of Information Science

and Technology, Osaka University.

He is a fellow of the IEICE and a

member of the IEEE, ACM, Internet Society, and IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

