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Abstract 

Future-generation networks are expected to be more 

robust to network failures. However, as each physical 

link carries multiple lightpaths when a VNT (Virtual 

Network Topology) is applied on an optical network, 

even the failure of a single link may tear down many 

links in the VNT, which can slow down the network or 

make it unusable. In this paper, we propose an algorithm 

called MFLDA (Minimum Flow Logical topology Design 

Algorithm) for designing VNT candidates that can 

accommodate a wide range of traffic patterns. Moreover, 

we show that the variant called MFLDA-FO (MFLDA 

with Failure Optimization) can design VNT candidates 

that have lower probability of congestion right after the 

failure of multiple nodes compared to HLDA, which is 

one of the best performing VNT design algorithms. 

Furthermore, we show that when these VNT candidates 

are used as attractors in an attractor selection algorithm, 

which was modeled on biological systems and proposed 

as a robust and self-adaptive control for future-generation 

networks, the average time to recover from difficult 

failure scenarios is less than the attractors designed by 

HLDA. Unlike HLDA, our VNT design algorithms and 

the attractor selection algorithm does not require the 

traffic matrix and the topology information after failure. 

Keywords: Virtual network topology design, Attractor 

selection, Network failure 

1 Introduction 

The global Internet traffic is growing at a 

tremendous rate. Currently, the only scalable way to 

carry such a large amount of traffic is using optical 

networks. The wavelength division multiplexing 

(WDM) allows accommodating high amount of IP 

traffic on fast optical networks and can span longer 

distances than electrical cabling, so it is a promising 

solution to handle the fast-growing Internet traffic 

demanding more and more capacity. However, due to 

the difficulties of high granularity switching at ultra-

high speed of optical networks, processing and 

switching at optical nodes have important limitations. 

An optical fiber may carry hundreds of wavelengths, 

but it is difficult to terminate each wavelength and 

moreover process and switch each packet carried on 

each wavelength at each node. However, new services 

and applications such as Internet of Things (IoT) and 

Video-on-demand (VOD) are emerging on the Internet, 

which cause fast changes in the traffic matrices and 

patterns. While optical wavelengths can carry tremendous 

amount of data, the connectivity limitations of optical 

nodes and wavelengths make it difficult to adapt the 

network to the fast-changing traffic. 

As one of the aims of the future-generation networks 

is adaptability and robustness to changing and 

fluctuating traffic, there are many works in the 

literature to solve this problem. A common solution is 

constructing a Virtual Network Topology (VNT) in 

which only the physical nodes that are the transmitter 

and receiver edges of a lightpath are shown as 

connected by a link. Modifying the VNT by changing 

the placement of lightpaths between nodes allows 

adapting the network for changing traffic conditions 

and new application layer services. A poorly 

configured VNT may cause congestion on some links 

even when there is enough capacity. 

The works in the literature for designing VNTs may 

be classified into two groups as online and off-line 

approaches [1-2] in general. The off-line approaches 

create VNTs suitable for a set of possible traffic 

demand matrices. However, Internet traffic is difficult 

to predict as new applications and services, which can 

dramatically change the traffic, appear in time [3]. 

Moreover, it is difficult to predict the traffic changes 

due to node/link failures, cyber-attacks etc. The online 

approaches sample the traffic demand periodically and 

design a new VNT for the current environment [4]. 

However, they require up-to-date traffic demand 

matrix information, which can be challenging to 

retrieve. Even if it is possible to retrieve traffic matrix 

information, it usually takes time to correctly estimate 

it, which may take too long to solve a congestion in a 

short time. For example, Gencata and Mukherjee [4] 

assumed that traffic demand is changing gradually with 

a period of more than several hours, so it may not be 

good for solving congestion due to traffic spikes. 
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Moreover, some of them cannot handle traffic changes 

due to node or link failures and some of them need to 

know detailed information like exact place of failures 

in the topology in order to work. 

The future-generation networks are expected to be 

robust to network failures and disasters. Likewise, 

living organisms are well-known to adapt to the 

changes in the environment such as disasters. Thanks 

to the powerful adaptation mechanisms stored in genes 

of living organisms, life continues on earth in spite of 

big and unexpected changes in the environment. 

Therefore, several methods based on modeling 

biological systems have been developed. It is shown 

that an attractor selection mechanism is adopted by 

biological systems to adapt to the environment and 

recover in order to increase the probability of survival. 

Therefore, an attractor selection control mechanism 

based on modeling the biological systems was 

proposed for future-generation optical networks in 

order to recover from topology failures and find a VNT 

that minimizes the maximum lightpath load in the 

network [5]. Unlike most on-line methods in the 

literature, attractor selection does not require a priori 

knowledge like the place of failed nodes/links or 

detailed information about the current environment like 

the up-to-date traffic matrix information. Attractor 

selection requires only the maximum lightpath 

utilization level, which can be retrieved quickly by 

Simple Network Management Protocol (SNMP) [6]. 

Using the maximum load level in the network as a 

simple feedback, the attractor selection algorithm also 

recovers the network from high congestion after 

multiple node/link failures. Many papers on VNT 

failures in the literature concentrate only on preventing 

the disconnection of the remaining nodes in the VNT 

after a failure. Moreover, most off-line analytical 

approaches in the literature propose protection against 

failure of only one or two random nodes/links at a time 

or a regional failure. On the other hand, attractor 

selection can solve complex problems with randomly 

distributed multiple node/link failures, which may 

occur due to a large scale distributed denial of service 

(DDoS) cyber-attack. 

In attractor selection, the system tries to find an 

equilibrium point by evolving around the attractors 

where the conditions are known or expected to be 

preferable. The attractor selection algorithm uses a list 

of VNTs as attractors. Koizumi et al. [7] showed that 

even when random VNTs are used attractors, attractor 

selection has better performance than I-MLTDA 

algorithm [8] in general. However, when the attractor 

VNTs were not suitable for the network, it took a long 

time to find a solution in some cases. The first work on 

designing VNT candidates as attractors was in [9], 

which showed that its attractors further decrease the 

convergence time compared to attractors selected in a 

random manner. While the algorithm is good for 

designing VNTs with low utilization for a wide range 

of traffic matrices, it does not take the physical 

topology into account. Therefore, lightpaths may end 

up passing through many hops in the physical topology. 

Long route length increases the probability that a 

lightpath passes through a failed node or link and tears 

down in case of a network failure. Moreover, the 

algorithm does not provide backup paths against big 

changes in the utilization distribution in the network 

due to failures. 

In this paper, which is an extended version of [10], 

we propose an algorithm called MFLDA (Minimum 

Flow Logical topology Design Algorithm) for 

designing VNT candidates that can accommodate a 

wider range of traffic patterns compared to a random 

VNT. Moreover, we present an extended version called 

MFLDA-FO (MFLDA with Failure Optimization), 

which is more robust against traffic changes after 

failure of multiple nodes. We show that right after a 

network failure a VNT designed by MFLDA-FO has a 

lower congestion probability compared to a VNT 

designed HLDA (Heuristic Logical topology Design 

Algorithm) [2], which is one of the best performing 

VNT design algorithms in the literature. Furthermore, 

we show that when the VNT candidates designed by 

MFLDA-FO are used as attractors in an attractor 

selection algorithm, the average time to recover from 

difficult failure scenarios is less than using the 

attractors designed by HLDA. Unlike HLDA, our VNT 

design algorithms and the attractor selection algorithm 

does not require the traffic matrix and the topology 

information after the failure. In [10], the simulations 

were carried out on Waxman [11] topology only. In 

this paper, we present new simulation results using 

Erdős–Rényi (ER) [12] topology to show the 

performance of the proposed algorithm. Moreover, we 

describe the proposed algorithm in more detail with 

more discussions. 

The paper is organized as follows. In Section 2, we 

present the algorithm for designing VNT candidates. In 

Section 3, we present the architecture of attractor 

selection. Section 4 shows the simulation results and 

discusses the performance of the architecture. Section 

5 concludes the paper. 

2 Problem Formulation 

An optical network architecture consists of optical 

routers connected with fiber links. The nodes are 

connected with dedicated virtual circuits called 

lightpaths. Optical routers can switch the lightpaths by 

optical cross-connects (OXC) and receive/transmit 

lightpaths through receivers and transmitters. As the 

number of receivers and transmitters in a node is 

limited, it is not possible establish lightpaths on each 

wavelength between adjacent nodes. If a lightpath is 

not terminated at a node, the lightpath can only pass-

through it towards the output fiber selected by the 

OXC. These pass-through nodes can be neglected in 
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the routing table of the IP network. Therefore, a virtual 

network topology can be drawn by considering the 

lightpaths as direct links between their receiver and 

transmitter nodes. Ohba et al. [9] showed that it is 

possible to design VNT candidates that give low 

maximum link utilization for a wide range of traffic 

matrices by optimizing the placement of lightpaths 

between nodes heuristically. However, the VNTs 

designed by Ohba et al. were not robust against 

network failures as it did not take the physical topology 

into account [9]. In this paper, our aim is to design 

VNTs robust against both wide range of traffic 

matrices and network failures, so it is more challenging. 

Let’s denote the traffic from a source to destination 

node as a flow. The flows are carried over the 

lightpaths established on the physical topology. The 

probability of a congestion on a lightpath increases 

with the increasing number of flows passing through. 

In order to minimizes the number of flows on the 

lightpaths, we propose an algorithm called MFLDA 

(Minimum Flow Logical topology Design Algorithm) 

for designing VNT candidates that  can accommodate a 

wide range of traffic patterns. Moreover, we extend it 

to MFLDA-FO (MFLDA with Failure Optimization) 

variant, which minimizes the number of flows on the 

lightpaths after node failures. 

The pseudocode code of the main algorithm is 

shown in Figure 1. First, the parameters are initialized 

and the initial VNT is established as shown in Figure 2. 

In Figure 2, n denotes the number of nodes in the 

network. The number of transmitters and receivers 

available on each node are stored in tra and rec arrays. 

When choosing the node pairs for new lightpaths, we 

give priority to the nodes that have highest number of 

available transmitters/receivers, so we apply a token 

based priority scheme. The transmitter and receiver 

tokens on each node are stored in token_tra and 

token_rec arrays and first initialized to the number of 

transmitters and receivers available. In the FOR loop 

on line 10, initially the VNT is set to the physical 

topology by establishing lightpaths on the fibers 

between adjacent nodes. The reason is that as the 

number of physical hops that a lightpath traverses 

increases, the probability of being hit by a failure 

increases, so priority is given to establish single hop 

lightpaths. In case the nodal degree is higher than the 

number of transmitters/receivers in a node, priority is 

given to the links that make the topology connected. 

This initial VNT serves as a substrate for adding new 

lightpaths. If network failures are not considered, it is 

also possible to use a simple random ring topology 

passing through all nodes as an initial VNT. The 

important point is that the initial VNT should be fully 

connected, so all nodes are reachable. On line 19 and 

in the next FOR loop, the number of tokens are 

normalized. As an example, assume that there are four 

nodes in a network and after initial VNT is created on 

line 10, they have 3, 4, 1 and 4 transmitters and 

receivers left, respectively. After normalization, their 

token count becomes 0, 1, -3 and 1. Only the nodes 

with tokens more than zero are allowed to establish a 

lightpath, so the second and the fourth nodes are 

candidates. 

 

1: INITIALIZE() 

2: repeat 

3:    COLLECTDATA() 

4:    stop_pass ← 0 

5:    sort pass[f][src][dst] in descending order with  

corresponding (f, src, dst) 

6:    repeat 

7:       repeat 

8:          get next (f, src, dst) in the sorted pass list 

9:          set the routing table to routing[f] 

10:          for each node pair src2 and dst2 whose route 

includes the lightpath from src to dst do 

11:             impact[src2][dst2] ← decrease[f]  

[src2][dst2]  * (hop[f][src2][dst2] - 1) 

12:          end for 

13:          sort impact[src2][dst2] in descending order  

with corresponding (src2, dst2) 

14:          repeat 

15:             get next (src2, dst2) in the sorted impact list 

16:             if token_tra[src2] > 0 AND token_rec[dst2] > 

0 AND tra[src2] > 0 AND rec[dst2] > 0 then 

17:                establish a lightpath from src2 to dst2 

18:                token_tra[src2]-- 

19:                token_rec[dst2]-- 

20:                tra[src2]-- 

21:                rec[dst2]-- 

22:                stop_pass ← 2 

23:             end if 

24:          until stop_pass is 2 OR impact list is empty 

25:          if stop_pass is 0 AND pass list is empty then 

26:             if MIN(token_tra) ≤ 0 OR MIN(token_rec)   

≤ 0 then 

27:                token_tra++ 

28:                token_rec++ 

29:                stop_pass ← 1 

30:             else 

31:                stop_all ← 1 

32:             end if 

33:          end if 

34:       until stop_pass > 0 

35:       re-initialize pass to last sorted list 

36:    until stop_all is 1 OR stop_pass is 2 

37: until stop_all is 1 

Figure 1. The main algorithm 

In order to select and add new lightpaths, the 

algorithm starts the main loop on line 2 in Figure 1. 

Each time a new lightpath is established, the algorithm 

returns to here. In order to select the s-d pairs for 

establishing lightpaths, the algorithm collects data on 

the current logical topology as shown in Figure 3. In 

order to analyze the effect of node failures, the 



282 Journal of Internet Technology Volume 19 (2018) No.1 

 

1:   function INITIALIZE 

2:      n ← number of nodes 

3:      stop_all ← 0 

4:      for k ← 0 to n do 

5:         tra[k] ← number of transmitters on k 

6:         rec[k] ← number of receivers on k 

7:         token_tra[k] ← number of transmitters on k 

8:         token_rec[k] ← number of receivers on k 

9:      end for 

10:    for each fiber from src to dst on physical  

topology do 

11:       if tra[src] > 0 AND rec[dst] > 0 then 

12:          establish a lightpath from src to dst 

13:          tra[src]-- 

14:          rec[dst]-- 

15:          token_tra[src]-- 

16:          token_rec[dst]-- 

17:       end if 

18:    end for 

19:    token ← MIN(MAX(token_tra), MAX(token_rec)) 

20:    for k ← 0 to n do 

21:       token_tra[k] ← token_tra[k] - token + 1 

22:       token_rec[k] ← token_rec[k] - token + 1 

23:    end for 

24:    return n, tra, rec, token_tra, token_rec, stop_all  

and initial VNT 

25: end function 

Figure 2. The initialization of parameters and setting 

the initial VNT 

1: function COLLECTDATA 

2:    for f ← ID of nodes that may fail and finally n do 

3:       if f < n then 

4:          simulate failure of node f 

5:       end if 

6:       routing[f] ← new routing table 

7:       for each node pair src and dst do 

8:          hop[f][src][dst] ← number of hops from src to  

dst 

9:       end for 

10:       for each lightpath from src to dst do 

11:          pass[f][src][dst] ← number of s-d pairs on  

lightpath from src to dst 

12:       end for 

13:       for each node pair src and dst without a direct 

lightpath do 

14:          decrease[f][src][dst] ← number of node pairs 

whose hop count will decrease if a lightpath 

is established from src to dst 

15:       end for 

16:       if f < n then 

17:          node f recovers 

18:       end if 

19:    end for 

20:    return routing, hop, pass, decrease 

21: end function 

Figure 3. Collecting data on the current logical topology 

algorithm simulates single node failures in the FOR 

loop on line 2 in Figure 3 and stores the data about the 

lightpath stats after the failure. The f variable is set to 

ID of the nodes that may fail. In the last loop, the stats 

are calculated for the VNT without any failure by 

setting f to n, which prevents node failures. As 

MFLDA creates a VNT without considering any 

failures, f is set to only n in MFLDA. The algorithm is 

called MFLDA-FO, when f includes the set of nodes 

that may fail. This allows the created VNT to be more 

robust against the failures at these nodes. If f loops 

over IDs of all nodes, the algorithm creates a VNT that 

is robust against all possible node failures. 

As a first stat, the routing algorithm is run to 

determine the paths on line 6 in Figure 3. When there 

are multiple possible paths, the selection varies with 

the implementation of the algorithm, so the exact 

behavior of the routing algorithm must be known. 

Using the routing information, the hop count 

distribution among s-d (source-destination) pairs is 

calculated on line 7. Then the number of total number 

of s-d pairs on each lightpath is calculated on line 10 

and stored in the array pass. On line 13, we find the 

number of node pairs whose hop count will decrease if 

a lightpath is established between a s-d node pair and 

store it as a metric for this s-d pair in an array denoted 

by decrease. While it is easy to estimate these stats in 

shortest path routing, it may be difficult with some 

routing algorithms. Their estimation in different 

routing algorithms is left as a future work. 

After collecting the stats, the main algorithm starts 

selecting the s-d pairs for establishing lightpaths in 

Figure 1. Among the possible candidates, the algorithm 

gives priority to the ones that will decrease the number 

of s-d pairs on the lightpaths that are carrying the 

highest number of s-d pairs. Therefore, the values in 

the pass array is sorted in descending order on line 5. 

By the loop on line 7, the algorithm loops over pass list 

with corresponding (f,src,dst) in order to decrease the 

number of s-d pairs on the lightpath from src to dst 

with the failure scenario f, until a new lightpath is 

established or pass is empty. In order to decrease the s-

d pair count on the selected lightpath, the algorithm 

tries to establish a direct lightpath between one of the 

s-d pairs on this lightpath. Therefore, the algorithm 

creates a list of s-d pairs passing through this lightpath 

and stores them in the array impact with an impact 

factor metric, which is the amount of decrease in total 

hop count between all node pairs after a lightpath is 

established between this s-d pair. After sorting the 

impact factor list in descending order, the algorithm 

tries to establish a lightpath among s-d pairs in the list 

in a loop starting on line 14. Before establishing the 

lightpath, the algorithm checks whether the lightpath 

satisfies the conditions like the node pair has enough 

number of tokens, transmitter and receivers. It may 

also need to satisfy other conditions like the maximum 

number of wavelengths on the fibers depending on the 
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architecture. 

While not mandatory, checking whether the 

congestion probability decreases after establishing the 

lightpath can further decrease the congestion 

probability. Even though each new lightpath decreases 

the average hop count in the network, in some cases 

the new lightpath may end up carrying many s-d pairs 

and become a bottleneck further increasing the 

congestion probability. If the distribution of the traffic 

matrix is known, the non-congestion probability for a 

given of s-d pairs on a lightpath can be estimated by a 

simulation. As a comparison metric, the overall non-

congestion probability of a VNT can be roughly 

approximated by multiplying the non-congestion 

probability of all lightpaths and the lightpath is 

established only if it decreases. While the metric 

usually has a high deviation from the real non-

congestion probability of the VNT due to the high 

correlation among adjacent lightpaths, our simulations 

revealed that it is useful for comparison and provides 

some small improvement in the congestion probability 

of the designed VNT. 

If a new lightpath is established, the algorithm stops 

trying establishing new lightpaths and goes back to the 

beginning of the main loop on the line 2. When pass is 

empty and no new lightpaths are established, the 

algorithm checks the tokens of all nodes. If there is a 

node with token less than one, the algorithm increases 

the tokens of all nodes by one so that more nodes can 

establish a lightpath and re-runs the loop after re-

initializing the pass array to the last sorted list. 

Otherwise, the algorithm stops and outputs the 

designed VNT. As many (f,src,dst) give the same value 

in pass and impact arrays, it is possible create different 

VNTs by random shuffling the order of (f,src,dst) sets 

before sorting the pass and impact arrays. 

Due to the token based architecture, it is difficult to 

state an order of complexity to the algorithm. As a 

reference, it takes around 30 minutes to design a VNT 

on a Waxman topology with 100 nodes and 400 optical 

fibers with 16 transmitters and receivers per node, 

using a not-so-optimized single-threaded C++ simulator 

on a single core of Intel 3960x CPU. Speed improvement 

of several orders of magnitude seems possible using an 

optimized and multi-threaded program. For example, 

CollectData function of MFLDA-FO in Figure 3 can 

be run O(n) faster than a single-threaded program by 

processing each iteration of the FOR loop on line 2 

using a different CPU core by parallel programming. 

3 Attractor Selection Control 

In biological systems, the interaction between 

metabolic reaction network and gene regulatory 

network controls the growth of cells. The gene 

regulatory network produces the proteins necessary for 

the cell growth. Each gene has an expression level, 

which shows the level of protein production. In the 

metabolic reaction network, proteins use the nutrition 

in the environment and produce the substances 

necessary for the growth. The concentration of 

substances necessary for growth is used as a feedback 

by the gene regulatory network about the current 

environment. High level of concentration means that 

the conditions are preferable, which implies an 

attractor state, so the deterministic behavior drives the 

biological system to continue using the current state. 

On the other hand, if the concentration of substances 

necessary for growth is low, the growth level decreases, 

which causes the system to be driven by stochastic 

behavior. In order to find a new attractor state for high 

growth, the system starts to change the expression 

levels randomly. The system returns back to 

deterministic behavior only after a new set of 

expression levels that is giving high growth rate is 

found. In other words, the system is driven by two 

behaviors, i.e., deterministic and stochastic. When the 

system conditions are preferable, the deterministic 

behavior drives the system to converge to an attractor. 

If the conditions are not preferable, the stochastic 

behavior dominates the system. The system searches 

for a new attractor by randomly changing the state by 

adding noise. When the system finds a new operating 

point with preferable conditions, deterministic 

behavior takes over the control again. The system is 

controlled by the current state as a feedback. 

3.1 Analytical Model in Biological Systems 

The expression level of n genes, which shows the 

level of protein production, is represented as 

1 2
( , , , )

n
x x x x= … . The protein production level is 

calculated by 

 ( )= .

dx
g x

dt
α η⋅ +  (1) 

In the equation, α is the growth rate showing the 

concentration of required substances. g(x) gives the 

deterministic behavior. The η is the Gaussian noise 

term showing the strength of stochastic behavior. If the 

concentration of required substances is low, α 

decreases, so η dominates the equation, which causes 

the gene regulatory network to do a random walk by 

fluctuations. Ref. [13] gives a detailed description of 

metabolic reaction network. 

3.2 VNT Control 

As the traffic conditions and the physical topology 

may change in time, a VNT reconfiguration control is 

necessary to adapt to the changes. A single VNT may 

not be able to give low utilization after each change in 

traffic pattern or each change in topology after a failure. 

In a biological system, the gene regulatory network 

adapts to the changing environment by taking the 

growth rate as a feedback as a result of the metabolic 

reaction network. In our work, we tried to adapt to the 
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changing IP network conditions by reconfiguring the 

VNT, so we interpret the VNT as the gene regulatory 

network and the IP network as the metabolic reaction 

network. The growth rate in biological system shows 

the how much preferable the conditions are. Our aim is 

to minimize the congestion on the highest utilized 

lightpath in order to decrease the packet drop rates and 

buffering delays. As high packet drop rates and 

buffering delays mean bad conditions, we chose the 

maximum lightpath utilization as a growth rate metric. 

When node/link failures occur, the capacity of 

available lightpaths may no longer enough to carry the 

traffic and cause high congestion in the IP network. 

The VNT control method, takes it as a feedback and 

reconfigures the VNT until the maximum utilization in 

the IP network decreases below a threshold value. The 

outline of the algorithm is as follows: 

(1) Measure and receive the maximum lightpath 

utilization by SNMP 

(2) Convert the lightpath utilization information to 

the growth rate feedback. Using the growth rate 

feedback, calculate the new expression level of genes. 

(3) Establish or tear lightpaths in order to 

reconfigure VNT according to the new expression level 

vector. 

4. Use the newly established VNT until next iteration. 

3.3 Analytical Model of VNT Control 

Each lightpath is controlled by a gene, so {i}-th 

lightpath has an expression level of xi, which is 

calculated by 

 = .
i

ij j i

j

dx
f W x x

dt
α θ η

⎛ ⎞⎛ ⎞
⋅ ⋅ − − +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑   (2) 

The α is the growth rate, which is calculated 

according the maximum utilization level in the IP 

network as a feedback. The η is the Gaussian noise 

term showing the strength of stochastic behavior. If the 

maximum utilization level is high, α decreases, so η 

dominates the equation, which causes the VNT to 

change randomly to find a new attractor. The rate of 

change in the expression level by the deterministic 

behavior is given by the sigmoidal regulation function 

 ( ) = tanh( ),f z zµ  (3) 

where µ is the gain parameter. W is the regulatory 

matrix, which shapes the system to convergence to an 

attractor state when the growth rate is high. θ is the 

threshold value for expression level. 

We use the SNMP to retrieve the maximum 

utilization level umax in the IP network to calculate α. It 

may be possible to use other metrics, but utilization is 

commonly used in many papers as a metric in the 

literature [2], [4]. umax is converted to α by 

 
1

= ,
1 ( ( ))

max
exp u

α
δ ζ+ ⋅ −

 (4) 

where δ is the gradient and the ζ is the threshold 

utilization parameter. When umax equals to the 

threshold, α is 0.5. When the umax surpasses ζ, the value 

of α converges to zero, which means low growth rate. 

In this case, the noise term η dominates the control and 

the VNT changes randomly, until the VNT control 

finds a VNT with low umax. After each iteration, the xi 

values are sorted from highest to lowest and the 

corresponding lightpaths are established in this order. 

The regulatory matrix W is a Hopfield neural 

network containing a set of possible attractors [14-16]. 

We use it as an associative memory to store the 

attractors by using orthogonal projection.  Let’s 

assume that we have m attractors, where attractor k has 

the VNT expression vector ( ) ( )

1( ) = ( , , )k k

i
x k x x… . The 

VNT lightpaths are coded according bipolar coding by 

setting xi to 1 if the lightpath is established and -1 

otherwise. Bipolar coding is used because bipolar 

vectors have a greater probability of being orthogonal 

than binary vectors [16]. Let X be a matrix whose rows 

are the attractors. First we calculate the pseudo-inverse 

matrix X+. Then the regulatory matrix is calculated by 

simply 

 = .W X X
+  (5) 

In order to store the attractors, it is also possible to 

use Hebbian learning, which has lower computation 

complexity than orthogonal projection. However, we 

used orthogonal projection because it has a higher 

memory capacity than Hebbian learning [17-18]. 

The convergence time to a solution depends on the 

performance of the attractors used. In the previous 

works on attractor selection, random VNTs were used 

as attractors. In this paper, we propose using the VNT 

candidates designed by MFLDA and MFLDA-FO as 

initial attractors in the regulatory matrix. 

4 Performance Evaluation 

We evaluated the performance of the proposed 

algorithm against network failures by a simulation 

study. In [10], only the simulation results on Waxman 

model [11] topology were shown. In this paper we also 

show the simulation results on Erdős–Rényi (ER) 

model [12] topology. Two physical topologies with 

Waxman and ER models were designed by BRITE tool 

[19] with default parameters. Both Waxman and ER 

topologies had 100 nodes and 400 optical fibers, one 

optical fiber for each direction. The number of 

transmitters and receivers in a node was limited to 16. 

As the transmitter/receiver count was the main limit, 

there were enough number of wavelengths on a fiber to 

carry the lightpaths. The amount of traffic per s-d node 

pair had a Log Normal (-0.5,1) distribution. In order to 

show the effect of traffic intensity, the traffic matrix 

was multiplied by k. A VNT was marked as congested 

if the utilization of one of its lightpaths was more than 



Designing VNT Candidates Robust Against Network Failures 285 

 

50%. The attractor selection algorithm parameters were 

µ = 10, δ = 50, and ζ = 0.5. The variance n of the noise 

η was 0.15. Shortest path routing is applied on both 

physical and logical topologies. 

We compared four different VNT candidate sets. 

The VNT candidates denoted by MFLDA were 

designed by the proposed algorithm without 

optimization for node failure, by setting f to only n on 

line 2 of the pseudocode, which prevents an 

optimization for failures. The VNT candidates denoted 

by MFLDA-FO were designed by the proposed 

algorithm with optimization for possible node failures 

by looping f from 0 to n. For comparison, the VNT 

candidates denoted by RLDA (Random Logical 

Topology Design Algorithm) and HLDA (Heuristic 

Logical topology Design Algorithm) [2] were also 

simulated. In RLDA, the VNTs were created by 

establishing lightpaths among randomly chosen node 

pairs. In HLDA, the VNTs were created by 

establishing lightpaths among the s-d pairs with the 

highest traffic according to the traffic matrix. In order 

to maximize the performance of HLDA in failure 

scenarios, HLDA is applied to the topology after 

failure with the knowledge of the failed nodes. 

Therefore, the VNTs created by HLDA were specially 

designed for the topology after failure. On the other 

hand, we simulate MFLDA and MFLDA-FO under 

harsher conditions without providing the traffic matrix 

information and the place of failed nodes. As the exact 

place of failed nodes are not known to the network, 

when the transmitters/receivers of failed lightpaths 

become idle, these idle transmitters/receivers were 

used for establishing new lightpaths among randomly 

chosen node pairs. 

Each VNT candidate set was simulated with 500.000 

traffic matrices and failure patterns to estimate their 

congestion probability. A set of 10 VNTs were 

designed by MFLDA-FO and MFLDA for both ER 

and Waxman topologies. In this paper, the random 

number generator seed, which is used for generating 

VNTs, was different from [10], so a different set of 

VNTs was used in all Waxman topology simulations 

than in [10]. In each simulation, one of the 10 designed 

VNT candidates was randomly selected and simulated. 

In order to increase the randomness, a different VNT 

was used by RLDA in each simulation. As HLDA 

optimizes the VNT for a given traffic matrix and failed 

node set, again a different VNT was designed and used 

by HLDA in each simulation. When a node fails, the 

lightpaths passing through its fibers fail at the same 

time. Instead of rerouting the failed lightpaths, the 

traffic on the failed lightpaths is rerouted to other 

available lightpaths like in [7]. 

Figure 4 shows the congestion probability for ER 

topology in Figure 4(a) and Waxman topology in 

Figure 4(b) when there was no node failure. The x-axis 

is the traffic multiplier and the y-axis is the congestion 

probability. As HLDA and RLDA are independent of 

the physical topology, they gave the same result in 

both graphs. While MFLDA-FO and MFLDA design 

VNTs specific to the physical topology, they gave very 

close results in ER and Waxman topologies in Figure 4. 

Compared to other algorithms, HLDA gave the 

lowest probability of congestion. As HLDA has the 

traffic matrix information and it designs a specific 

VNT for each traffic matrix, this is an expected result. 

However, our aim is to design VNT candidates without 

traffic matrix information. In Figure 4, MFLDA gave 

lower congestion probability than MFLDA-FO. The 

reason is that the failure optimization causes the VNT 

to include backup paths against possible failure 

scenarios. These lightpaths may not be so useful when 

there is no failure, so the congestion probability of 

MFLDA-FO was a bit higher than MFLDA. RLDA 

gave the highest congestion probability. 

Figure 5 and Figure 6 show that when 5 and 10 

nodes failed, MFLDA-FO gave lower congestion 

probability than the other algorithms unless the traffic 

was too high in both ER and Waxman topologies. 

When 5 nodes failed and the traffic intensity k was 

0.005 in ER topology, the congestion probability of 

MFLDA-FO was more than three times lower than 

HLDA. When 5 nodes failed and k was 0.0077 in the 

Waxman topology, the blocking probability of 

MFLDA-FO was half of HLDA. While HLDA had 

both the traffic matrix and failed node list information, 

it could not create direct lightpaths among some of the 

s-d pairs with high traffic, whose lightpath route pass 

through failed nodes. As HLDA does not provide any 

optimization for these s-d pairs, they may end up using 

multiple lightpaths and concentrate on some lightpaths 

and cause congestion. On the other hand, MFLDA-FO 

optimizes the VNT by taking failures into account to 

prevent hot-spots, so it gave lower congestion 

probability unless the traffic was too high. As many 

lightpaths become unavailable and the characteristics 

of the topology greatly changes after multiple node 

failures, the optimizations by MFLDA no longer work, 

so the VNTs designed MFLDA gave similar 

congestion probability to RLDA. 

While MFLDA-FO had lower probability of 

congestion right after failure, not all possible failure 

scenarios could be solved by VNT optimization only. 

In such cases, attractor selection mechanism allows 

solving complex failure scenarios after some iterations. 

However, the convergence time to a solution depends 

on the performance of the attractors used. Figure 7 

shows the cumulative distribution function (CDF) of 

the number of iterations by attractor selection 

algorithm until it finds a VNT that has maximum 

lightpath utilization less than 50% for ER and Waxman 

topologies. The VNT candidates designed by MFLDA-

FO, MFLDA, HLDA and RLDA were set as the 

attractors of the attractor selection algorithm and the 

initial VNT. Each attractor set was simulated with 

2000 different failure patterns and traffic matrices. The   



286 Journal of Internet Technology Volume 19 (2018) No.1 

 

 

 

 



Designing VNT Candidates Robust Against Network Failures 287 

 

traffic intensity k was set to 0.0083. Five randomly 

chosen nodes failed before the first iteration. The x-

axis is the number of iterations until convergence. As 

seen in the figure, the attractors designed by our 

MFLDA-FO gave much faster convergence than both 

RLDA and HLDA algorithms, even though HLDA had 

both the traffic matrix and failed node list information 

that were not available to MFLDA-FO. Around 10% of 

the simulations could not converge as there was no 

solution or the solution domain was too small. 

5 Conclusion 

In this paper, we proposed an algorithm called 

MFLDA for designing VNTs that can accommodate a 

wider range of traffic patterns without using traffic 

matrix information in order to increase the adaptability 

and robustness of optical networks to the changing and 

fluctuating traffic due to emerging applications and 

services in future-generation networks. We also 

presented an extended version called MFLDA-FO to 

design VNTs robust against congestion due the traffic 

changes after network failures. The simulation results 

showed that the VNT candidates designed by MFLDA-

FO can accommodate a wider range of traffic both 

before and right after a failure of multiple nodes. As 

not all possible failure scenarios could be solved by 

applying a single optimized VNT, an attractor selection 

control mechanism proposed for future-generation 

optical networks was applied. The simulations showed 

that the converge time is faster when VNTs designed 

by MFLDA-FO are used in the attractor selection 

algorithm, compared to the attractors designed by 

HLDA algorithm. Unlike HLDA, our VNT design 

algorithms and the attractor selection algorithms do not 

require the traffic matrix information and the failed 

node list. 

While it is easy to estimate the routing stats used in 

our algorithm when shortest path routing is applied, it 

may be difficult with some routing algorithms. As a 

future work, we will investigate the possible 

implementation issues with other routing algorithms 

and evaluate their performance. 
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