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Abstract 

Social networks provide a large amount of social 

network data, which is collected, studied and distributed 

for various purposes. Because social network data usually 

contains sensitive personal information, it needs to be 

anonymized before publication. Many data 

anonymization methods have been proposed to protect 

the privacy of individuals; but most methods were 

proposed for general purposes and suffer the problem of 

excessive information loss when they are used for 

specific purposes. In this paper, we focus on the problem 

of improving data utility when applying privacy-

preserving methods to the original data for protection 

privacy. We propose two novel local-perturbing methods: 

one is based on the k-anonymity model; the other is based 

on a randomization model. Both methods can achieve the 

same privacy levels as k-anonymity model while 

minimizing the impact on community structure. We 

evaluate the performance of our methods by testing three 

real-world datasets. Experimental results show that both 

methods loss less community structure information 

compared to existing methods. 

Keywords: Social networks, Privacy protection, 

Anonymization, Community structure 

1. Introduction 

In recent years, social network services have steadily 

and rapidly grown. Social network services include a 

diverse set of social network platforms such as 

LinkedIn and Twitter but also encompass user 

interaction networks like email, chat, and blog 

applications. The data from social networking services 

is valuable for academic researchers from a variety of 

field such as sociology and information science [10]. 

To use social network data effectively, the data owner 

usually share it with different data miners. However, 

unlike most scientific data, these data contains personal 

and sensitive information about individuals, such as a 

person’s name, age, address, personal relationships, 

and interests. Sharing raw data breaches consumer 

privacy laws. To fulfill the needs of data sharing, many 

anonymization methods have been developed to 

protect the privacy of individuals. However, most of 

them are proposed for general purpose, that is, the 

privacy-preserving process does not take into account 

the purpose of using the data. In general, data owners 

and data reception are fully communicated when 

sharing data. If we consider the using purpose of the 

data when designing of privacy protection methods, we 

will be able to retain better data utility. 

 In this paper, we assume that the purpose of data 

sharing is to conduct community-related analysis and 

propose local-perturbing methods to anonymize social 

network data for preventing individuals from being re-

identified. We study the problem of restricting the 

privacy-preserving method into local group in the 

original data to improve output data utility. Then we 

propose two novel local-perturbing methods: one is 

based on a k-anonymity model, with the other based on 

a randomization model. Both methods achieve 

comparable performance with the k-anonymity model 

while minimizing the impact on community structure. 

2.2 Motivation 

To protect the privacy of individuals, simple 

anonymization methods remove identity information 

from each node, such as names and IDs. This process 

is insufficient as described by many research studies 

[12]. Example 1 illustrates a privacy attack on a naive 

anonymized social network. 

Example 1. A typical social network is shown in 

Figure 1(a). The social network’s naive data 

anonymization graph is illustrated in Figure 1(b). The 

data anonymization method is characterized by 

removing the names of every participant. Nevertheles, 

an adversary could re-identify the victim via 

neighborhood attack [18] or a complex structural attack 

[3]. In this example, we assume that the adversary 

knows that the victim Kin has one friend, and his 

friend has three friends. With such background 

information, the adversary may easily infer that Kin is 

the node V3 in Figure 1(b). 
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(a)                                         (b) 

Figure 1. (a) Raw social network; (b) Naive 

anonymized social network 

One of the effective ways to protect the privacy of 

individuals in Example 1 is through the use of k-

anonymity [3-4], or randomization [21]. The k-

anonymity model divides all nodes into several groups. 

Each group has at least k indistinguishable nodes.The 

randomization model adds noise data to the original 

data, and protects the privacy via uncertainty. 

Both the k-anonymity and randomization models 

focus on keeping general properties unchanged while 

protecting the privacy of individuals. Some properties, 

such as community structure, are import for science 

research in the fields such as sociology and 

anthropology. These properties also benefit practical 

applications such as recommendation system and 

public administration. Without considering community 

structure information, the boundaries of the original 

community structure will likely become blurry after the 

k-anonymity reconstruction process [2-3]. We use the 

following example to illustrate the drawbacks of the k-

anonymity methods. 

Example 2. The original data shown in Figure 1 has 2 

communities {C1, C2} and 2 edges between them, 

where C1= {V1, V2, V3, V4}, C2= {V5, V6, V7}. Figure 2 

shows its anonymized output using the privacy method 

proposed by A. Campan [3]. All nodes are grouped 

into two super nodes, cl1 and cl2, based on neighbor 

similarities with parameter k=3. Because most graph 

analysis algorithms can only process atomic nodes and 

edges, the k-anonymity super nodes usually need to be 

reconstructed before analysis. Figure 20 shows a 

possible result of reconstructing the data in Figure 30. 

The number of edges connecting the communities C1 

and C2 in Figure 20 becomes four, which blurs the 

boundary of the communities. There is a considerable 

difference between the original and anonymized graph. 

This is likely due to the difference in community 

structure information. 

To address the problems mentioned above, we 

propose novel local-perturbing approaches, that can 

achieve the same privacy requirement of the k-

anonymity, while preserving high utility of the 

community structure. In addition, we extend the local-

perturbing approach presented in conference paper [19], 

and propose a local-perturbing approach that uses the 

randomization-based privacy-preserving model. 

 

Figure 2. A reconstructed graph 

 

Figure 3. A 3-anonymity graph 

1.2 Contributions 

The contributions of this paper are summarized as 

follows.  

(1) We study problem of restricting the privacy-

preserving methods into local groups of the original 

data to improve output data utility. Then we localize 

two types of privacy models: the k-anonymity and 

randomization. 

(2) By considering the community structure in the 

clustering and perturbation procedures, our local-

perturbing methods have comparable privacy levels 

with k-anonymity model while minimizing the impact 

on community structure. 

The remaining parts of the paper are organized as 

follows. Section 2 defines the privacy problem in 

social networks. Section 3 presents our two privacy-

preserving methods. Section 4 examines our solution 

using real world datasets. Section 5 discusses related 

work and Section 6 concludes this paper. 

2 Problem Definition 

In this paper, we model a social network as an 

undirected graph G= (V, E), where V is a set of nodes, 

and VVE ×∈ is a set of edges. Each node indicates an 

individual in the social network. An edge between two 

nodes represents their relationship. Only binary 

relationships are allowed in our model. 

2.1 The Privacy Model 

Adversaries usually rely on background knowledge 

to re-identify individuals and then learn their sensitive 

information from published social network data. In this 

paper, we assume that an adversary knows sub-graph 

information about the target victim, and wants to re-

identify the node of the targeted victim in the published 

data. We first define the scenario of a privacy breach.  

Definition 1 (Privacy breach). Let G be a social 

network and G’ be the published anonymization data 

of G. A privacy breach occurs when adversaries can 

successfully map a target user to a node in G’ with a 
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level of confidence higher than 1/k. 

2.2 Problem Statement 

In this paper, we assume that the data publishers are 

trusted and that the social network users are willing to 

provide their detailed information to them. To protect 

individual privacy when sharing the data, the data 

publishers want to design a sanitization technique to 

transform the original data into an anonymized version. 

The problem statement of this research is: 

 Given a social network G without labels, and a 

privacy requirement k. The problem of anonymization 

of social network for community structure is to 

transform G to a local-perturbing social network G’ 

that does not breach privacy requirements, while 

retaining as much community structure as possible. 

2.3 Relevant Definitions 

In this section we provide some relevant definitions 

that will emerge in the description of our work. 

The nodes in the social network tend to form 

closely-knit groups, and the connections within the 

group are dense; whereas, connections with the rest of 

the network are sparse. These groups are also known as 

communities. 

Definition 2 (community in social network). Let 

G= (V, E) be a social network with a set of 

communities C ={C1, C2, …, Cm}, where φ=ji CC ∩  for 

all mji ≤≠≤1 . For each CC
o
∈ , the density of the 

internal connection is higher than the external 

connection. 

In this paper, we choose a classical community-

detecting algorithm, the Girvan and Newman algorithm 

[7], to discover community structure. The algorithm 

uses the modularity optimization method to explore the 

community structure. The modularity of a social 

network is defined as follows [6, 12]: 

 2
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where n is the number of communities, lc is the total 

number of edges in the community c, dc is the sum of 

the degrees of nodes in the community c, and m is the 

number of edges in G. 

The k-anonymity-based local-perturbing method 

includes two steps, clustering and reconstruction. Some 

relevant concepts used in the process of anonymization 

are formally defined as follows. 

Definition 3 (k-cluster social network). Let G= (V, 

E) be a social network, where k is the threshold 

specified by social network data publishers. For a 

given clustering CL= {cl1, cl2, …, cln} of V, the 

corresponding social network is denoted as Gcl where 

φ=
ct

clcl ∩  for all nct ≤≠≤1 , and kcl
i
≥|| for ni ≤≤1 .  

In the clustering process, all nodes are divided into 

clusters based on similarity criteria. In other words the 

nodes in each cluster are as similar as possible. We use 

the distance between nodes as the measurement of 

similarity and define the distance between two nodes 

as  

Definition 4 (the distance between nodes). The 

distance between two nodes (Vi, Vj) is: 

dist
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where n is the number of nodes in a graph. The reason 

that n is reduced by 2 in the denominator is that we 

exclude Vi and Vj from the set. The symbol adj [Vi] 

denotes the set of neighbors of a node Vi. For example, 

adj [V2 ] in Figure 1(b) is {V1, V3, V4}. Thus, the 

distance between V1 and V2 in Figure 1(b) 

is
5
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Next, we define the distance between a node and a 

cluster [3].  

Definition 5 (the distance between a node and a 

cluster). The distance between a node Vp and a cluster 

clq is: 
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3 Local-perturbing Methods 

In this section, we introduce two local-perturbing 

methods to preserve privacy in data publishing. One is 

based on the k-anonymity model and the other is based 

on the randomization model. Both methods can 

transform the original social network G into a locally 

perturbed graph G’ that preserves privacy while 

providing better data utility for community analysis. 

3.1 The Local Perturbation Based on k-

anonymity  

Because most of the previous data anonymization 

methods only consider data privacy and ignore data 

application, we consider application requirements and 

preserve the key data property for the community 

analysis related applications by using a local-

perturbing technique.  

3.1.1 Cluster for Social Networks 

The first step of the k-anonymity-based method is to 

transform G into a k-cluster graph Gcl. The pseudocode 

of the method is shown in Table 1. 

In the K-cluster algorithm, line 1 sets the variable 

CL to store the clustering result, and also initializes the 

intermediate variables i. Lines 2 to 8 sequentially 

divide the nodes in set V into i clusters of k-size until V 

contains fewer nodes than k. Line 3 generates a new  
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Table 1. The K-Cluster( ) algorithm  

Algorithm 1. K-Cluster(G, k) 

Input: Social network G=(V, E), V in descending 

order of degree and the threshold k. 

Output: A k-cluster graph Gcl and number of clusters.

1: φ=CL ; i=1; 

2:while |V|>=k  

3:    i

seed
V =V [0]; cli={ i

seed
V }; V=V-cli; //select the seed  

node for cli; 

4:    while |cli|<k 

5:         FindBestNode(V, cli); 

6:    end while 

7:    }{
i

clCLCL ∪= ; i++; 

8: end while 

9: if  V φ≠   

10:    cli←V;//store V in cli; 

11:    for each v in cli 

12:          FineBestCluster(v, CL); 

13:          V=V-{v}; 

14:    end for 

15:end if  

 

cluster cli with the node in current V that has the 

maximum degree at each step, and then removes that 

node from V. Lines 4 to 6 use the subroutine 

FindBestNode(V, cli) to find and add the suitable nodes 

to the current group in turn until the cluster size is k. 

Line 7 records the current cluster result in CL and 

increases the group number i by 1. If the number of 

elements contained in the set of nodes V is not a 

multiple of k, it is necessary to use lines 9 to 14 to 

process the remaining nodes. Line 9 tests whether the 

set V is empty. If not empty, lines 10 to 14 assign 

nodes to the appropriate cluster. 

Due to the power law degree distribution [5], it is 

likely that more than one node have the same degree, 

which results in multiple nodes have the same distance 

from the current cluster. We are faced with the 

question of how to choose the appropriate nodes from 

the candidates of the current cluster, that have a 

minimal impact on the community structure. Different 

selections lead to different results. Thus, we devise a 

heuristic subroutine FindBestNode() for selecting 

approprite nodes, as shown in Table 2. 

In detail, Lines 1 to 3 use Equation (3) to calculate 

the distance from each alternative point Vp to the 

cluster cli. Line 4 selects the nodes with the minimum 

distance and stores them in CanN. Note that there may 

be multiple nodes with the same minimum distance. 

Line 5 tests whether CanN contains only one element. 

If the set CanN has only one element, lines 16-18 are 

processed. Line 17 adds the unique node to the 

community cli. Line 18 removes this node from set V. 

If the set CanN has more than one element, lines 6-15 

are processed. The main processing step is selecting 

the node which is in the same community as Vi

seed to  

Table 2. The function of FindBestNode( ) 

Function1. FindBestNode(V, cli) 

1:for each node Vp in V：  

2:    compute the distance dist (Vp, cli);  

3:end for 

4:store  the nodes with the smallest distance in set 

CanN; 

5:if |CanN|>1  

6:    for each node Vq in CanN://traverse the list 

7:         if Vq and i

seed
V  are in the same community 

8:               add the Vq to cli, V=V-{Vq}; 

9:               return; 

10:       end if 

11:    if no node is in the same community as i

seed
V  

12:        add the last node Vq to cli; 

13:        V = V –{ Vq }; 

14:        return; 

15:    end if 

16:else 

17:    add the only element  Vq in CanN to cli; 

18:    V=V-{Vq}; 

 

join cli first. If there is no such node, the function 

selects the last node in the set V to join cli. 

When the number of nodes in G is not a multiple of 

k, it is possible that the number of nodes in current V is 

less than k. Then, we should find the best cluster for 

each of them. The specific process is described as the 

FindBestCluster() function, shown in Table 3. 

Table 3. The function of FindBestCluster( )  

Function2. FindBestCluster(v, CL) 

1:mincl=dist(Vm, cl0); 

2:for each cluster cln in CL:  

4:    if Vm and Vn
seed are in the same community  

5:        Bestcl=cln; Break; 

6:    else 

7:        dist=dist(Vm, cln); 

8:        if dist<mincl 

9:            mincl=dist; 

10:            Bestcl=cln; 

11:        end if 

12:    end if 

13:end for 

14:add Vm to cln; 

 

We use an example to explain how to generate cl in 

Agorithm 1. 

Example 3 Consider k=3 in Figure 4(a). The list of V 

after sorting (by degree) is {V5, V2, V1, V4, V3, V6, V7}. 

A new cluster cl1 starts with the seed node V5 which 

has the largest degree. Then, V5 is removed from list V. 

We calculate the distance between cl1 and the nodes in 

V, and get the minimum dist(Vp, cli)= dist(V2, cl1)= 

dist(V6, cl1)= dist(V7, cl1)= 3/5. We can then easily get 

the candidate set CanN={V2, V6, V7}. Then, we access 
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CanN in turn. V2 is not in the same community as V5, 

but the next node V6 is in the community. Therefore, 

we stop the search and add V6 into cl1. We then remove 

V6 from list V. We repeat the steps in the algorithm 

until the number of nodes in cl1 is 3. 

 

(a)                                     (b) 

Figure 4. The illustration of generating cl 

3.1.2 Reconstruction 

To protect a user’s privacy and analyze data 

effectively, the k-cluster social network data needs to 

be reconstructed before releasing. This process will 

bring uncertainty to the reconstruction of the graph, 

which is worse for data analyzers to achieve accurate 

community structure information. Here, we reconstruct 

the k-cluster graph by randomly regenerating edges in 

each cluster uniformly and making sure that the 

number of intra-cluster edges in each cluster is the 

same as the original. Note that the number of inter-

cluster edges remains the same as the original. 

For each cluster in the k-cluster social network graph, 

we clean all the edges first and regenerate edges among 

nodes in the current cluster with uniform probability 

until the number of edges is the same as the original 

cluster. 

A uniform probability distribution is used when 

selecting any node pair to regenerate edges in each 

cluster during the reconstructing process. The 

probability distribution guarantees that each node has 

an equal likelihood of being chosen, in other words, the 

nodes in a cluster are indistinguishable. In addition, the 

size of each cluster is bigger than k, therefore, the 

probability for an adversary to re-identify any node in 

the anonymized social network G’ is no more than 1/k. 

From the details above, we can safely assume that our 

local-perturbing approach can achieve the same 

privacy performance as k-anonymity. 

3.2 The Local Perturbation Based on 

Randomization  

The randomization-based method uses perturbation 

to protect privacy. It adds random noise to the original 

social network data by adding or deleting edges 

randomly, and protects the data against the re-

identification risk in a probabilistic manner. However, 

existing random methods do not consider the inner 

attribute of the data, and lead to much information loss. 

In this paper, we restrict the random perturbation to the 

local groups of the graph, and devise a local-perturbing 

method for privacy-preserving data sharing.  

To restrict the perturbation to the local, we use the 

fast GN community-detecting algorithm to divide the 

original data into communities [20, 22]. Then, we 

adjust the results by combining the communities that 

contain less than k nodes. We use the perturbing 

method proposed by Ying to protect the privacy of 

each community [21]. The pseudocode of the local-

perturbing method based on randomization is 

illustrated in Table 4. 

Table 4. The Localrandomization( ) algorithm 

Algorithm 2. LocalRandomization(G, k) 

Input: Social network G=(V, E) and the threshold k 

Output: The anonymized graph G’  

1: comm=FastGN(G); 

2: CombineCom(comm, G); 

3: for each community  ci in comm 

4:       m=CalEdgesNum(k, ci); 

5:       RandomPerturb(m, ci); 

6: end for 

7: Reconstruct the edges between communities; 

 

The fuction FastGN() returns a list of communities 

with maximum modularity. The function Combine 

Com(), in line 2, merges the communities that contain 

nodes less than k. The pseudo code is illustrated in 

Table 5. The function CalEdgesNum(), in line 3, uses 

formula (4) of paper [21] to calculate the number of 

perturbing edges m. Line 6 uses the randomization 

method proposed by Ying [21] to perturb the 

community ci with parameter m. Line 7 reconstructs 

the edges between communities. 

 ˆ( ) min [ | ( )] 1
r

J m E d
α

τ α
∈Ω

= ≥  (4) 

Table 5. The function of CombineCom( ) 

Function 3. CombineCom(comm, G) 

1 for each community ci in comm   

2:    if Size(ci)<k 

3:        find its directly connecting community list dc; 

4:        merge ci with the community that the result has 

the maximum modularity;  

5:    end if 

6:end for 

4 Experimental Evaluations 

To evaluate our local-perturbing methods, we 

compared our methods with the SaNGreeA-uniform 

privacy-preserving method. The SaNGreeA-uniform 

method was first proposed by Campan in [3], and 

extended in [2] by determining the impact of the 

method on community structure. The main idea of the 

SaNGreeA-uniform is generalization: the nodes in the 

original data generalize to super nodes; the edges 

between super nodes generalize to edges with weight. 
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We choose the SaNGreeA-uniform method as a 

comparison mainly for two reasons: (1) The 

generalization of the SaNGreeA-uniform is related to 

the localization of this paper; (2) The author also 

studies the effect of the SaNGreeA-uniform on 

community structure in subsequent paper [2]. We 

tested several utility measurements to show how well 

the published data preserves the structural information 

of the original data.  

4.1 Datasets 

We evaluate the data utility on three real-life 

datasets: WebKB dataset, Citation dataset and Cora 

dataset. 

WebKB(http://linqs.umiacs.umd.edu/projects//proje

cts/lbc/index.html) consists of 877 websites coming 

from 4 universities and 1608 relationships between 

them. 

Citation (http://www.datatang.com/data/17310) is a 

citation graph dataset. It consists of 2555 papers and 

6101 citation relationships. This dataset is a directed 

multigraph, collected by an academic researcher of 

Tsinghua University and published in a Web site 

named Datatang.  

Cora(http://www.cs.umd.edu/projects/linqs/projects/

lbc/index.html) is a directed graph dataset which 

contains 2708 nodes and 5429 edges. 

The three data sets are all in text format, using the 

binary tuple <v1, v2> to denote the edge between node 

v1 and node v2. The tuple of each edge occupies a line 

in the data file. 

We implemented our two local-perturbing 

algorithms with Python (2.7.X). We use the open 

source software package Network X to store and 

manipulate the graph data. We also use the open source 

package SciPy to perform probability-related 

calculations. 

4.2 Data Utility Measurements 

We use jaccard similarity and the change of 

community ΔQ to compare community preservation 

between the initial graph and anonymized graph.  

The Jaccard similarity is a statistic used for 

comparing the similarity and diversity of sample sets. 

We use it as a criterion for the difference of two 

communities, and define it as 

 

 
| ' |
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where Ci is a set of nodes of each community in 

original graph G and C’i is the corresponding set of 

nodes in the anonymized graph. To evaluate the 

similarity between the initial graph and anonymized 

graph, we sum all the differences of communities and 

define the similarity measurement as the arithmetic 

mean of J(Ci). 

 1( , ') , [1, ]

n

i

i

J

J G G i n
n

=

= ∈

∑
.  (6) 

Modularity is one of the measures to indicate 

community properties of networks. We use the change 

of modularity to test the community information 

change after being anonymized. Intuitively, the greater 

the result, the more the community becomes blurry, 

that is, the community information of the original 

social network do not get preserved. 

 ΔQ = Q - Q’   (7) 

In addition, we use a general measurement 

Clustering Coefficient (CC) to evaluate the impact of 

our local-perturbing methods. This measurement 

represents the degree to which the vertices in a graph 

tend to be clustered together. The CC of a vertex v is 

given by the proportion of connections between the 

vertices within its neighborhood divided by the number 

of connections that could possibly exist between them. 

This is calculated using  

 Cv=2T(v)/dv(dv-1), (8) 

where T(v) is the number of triangles through vertex v 

and dv is the degree of v.  

We conducted the experiments on a workstation 

with 32GB RAM and Xeon E5-2630 CPU. We examed 

the impacts of privacy-preserving methods on three 

datasets by changing k values from 5 to 30. For 

convenience, we use the notation local-K to represent 

our local-perturbing method based on k-anonymity and 

local-R to represent our local-perturbing method based 

randomization. For the SaNGreeA-uniform and local-k 

methods, the value of k indicates that the attacker 

cannot re-identify the target node within k nodes. For 

the local-R method, the value of k indicates that the 

probability that the attacker can re-identify the target 

node is not more than 1/k. In this setting, the three 

privacy-preserving methods are comparable. 

4.3 Results and Analysis 

We first tested how well the published graph 

represents the original graph. We use Jaccard 

similarity and the change of modularityΔQ to measure 

the changes. 

Figure 5(a), (b), and (c) show the Jaccard similarity 

of the three datasets respectively. The vertical axis 

represents the Jaccard similarity of each method in 

terms of k. The horizontal axis represents the value of k. 

The legend of local-k represents our local-perturbing 

method based on k-anonymity and the local-R 

represents the randomization-based method. As shown 

in the Figure 5(a) to (c), the Jaccard similarity 

decreases as k increases because stronger privacy 

protection requires more perturbation, which will 

generate a difference with the original graph. The 

results also show that for all the three datasets, our two 
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local-perturbing methods perform better than the 

SaNGreeA-uniform algorithm.  

  

(a)WebKB 

 

(b)Citation 

 

(c)Cora 

Figure 5. Jaccard similarity for different k 

Figure 6 (a), (b), and (c) show the change of 

modularity ΔQ of the three datasets respectively. From 

the figures, we can see that the boundaries between 

communities from the original social network become 

more blurry with the increase of the values of k. Our 

two methods have less of an impact than the 

SaNGreeA-uniform method. The randomization-based 

method performs the best because it impacts the 

modularity only when it merges the communities 

containing nodes less than k. 

The social network data is complex and has many 

topological properties. The CC is an important metric 

used to identify social network data. We use this metric   

  

(a)WebKB 

 

(b)Citation 

 

(c)Cora 

Figure 6. ΔQ for different k 

to evaluate the impact of all three privacy-preserving 

methods. The changes in CC are presented in Figure 

7(a), (b), and (c). As the value of k increase, the CC 

term becomes smaller. The CC values of SaNGreeA-

uniform algorithm are even close to 0. Intuitively, our 

approaches exhibit less different to the original social 

network. 

The comparison results show that the local-R 

method performs better than the other two algorithms 

in all three metrics. The results also show that the 

randomization approach is more advantageous for 

protecting privacy. Especially when the stochastic 

process is restricting, the randomization method can 

keep the user specified information better. 
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Figure 7. CC for different k 

5 Related Work 

There are many research efforts to develop privacy-

preserving methods for social networks. The privacy of 

social network data can be categorized into two types. 

One type is node-privacy, which focuses on node re-

identification [3, 8, 10, 18] and node-attribute disclosure 

[3]. In node re-identification, the attacker’s goal is to 

identify the target victim to obtain valuable information. 

In nodal-attribute disclosure, the attack goal infers 

sensitive information from a targeted victim, such as 

disease or salary. The other type is edge-privacy, 

which consists of link re-identification [13, 17] and 

edge-based attribute disclosure [3]. For link re-

identification, the attack goal is to identify sensitive 

relationships between nodes; while for edge-based 

attribute disclosure, the attack goal is to infer sensitive 

relationships between nodes. This paper focuses on 

preventing node re-identification in unlabeled graphs. 

In this way, we could protect the sensitive information 

about individuals, such as the importance of the target 

victim in the community. 

To protect sensitive information, some data 

anonymization techniques have been proposed in 

recent years. These techniques can be classified into 

four categories: adding nodes [4], adding and deleting 

edges [3, 10, 17], generalization [3, 8], and randomization 

[1, 21].  

Recently, research on community-based node re-

identification have been studied in [14-16]. Tai [14] 

presented the model of structural diversity. In this 

method, for each node v, there must exist at least k-1 

other nodes located in at least k-1 other communities 

with the identical degree of v. This implies that nodes 

can be protected. Due to the existence of community 

structure in social networks, this will cause more 

structural information losses in previous research [15-

16]. 

On the whole, studies related to this paper we using 

are social network clustering model and graph 

reconstructing model. Besides, we also use the 

community detection approach to detecting community 

structure of social network graph. 

6 Conclusion 

In this paper, we formally define the problem of 

anonymizing social network in order to share data with 

third-parties. We propose two novel local-perturbing 

approaches that localize two types of privacy models, 

k-anonymity and randomization, to solve the privacy 

problem. Considering the community structure in the 

clustering and perturbing procedure, our proposed 

methods can achieve the same privacy requirement of 

the k-anonymity model while minimizing the impact 

on community structure. Our methods can be made 

into a software. The data owner uses the software to 

sanitize the data before it is released. Our methods can 

protect the privacy of users in the data.We performed 

experiments on three datasets: the WebKB dataset, 

Citation dataset, and Cora dataset. Each dataset was 

measured against the three metrics: the jaccard 

similarity, the change of modularity, and the average 

clustering coefficient. The experimental results show 

that our methods can provide the same privacy 

protection level of k-anonymity and have less loss of 

community structure information compared with 

existing techniques. 
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