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Abstract 

Service function chaining (SFC) enables specific 

network flows to be processed through an ordered set of 

service functions. In this paper, we propose a two-stage 

failover mechanism to provide high availability (HA) in 

SFC. In the proposed mechanism, a secondary service 

function path (SFP) is pre-computed, which is maximally 

disjointed with the primary SFP, and a backup service 

function instance (SFI) is prepared for each service 

function. For a failure event, the first local repair stage is 

examined by means of the preconfigured backup SFI. If 

the backup SFI is not available and/or any link is failed, 

the second end-to-end repair stage is triggered by 

replacing the primary SFP with the secondary SFP. 

Simulation results demonstrate that the proposed failover 

mechanism can reduce the recovery time by 50%-75% 

compared to the conventional approach. 

Keywords: Service function chaining (SFC), service 

function (SF), service node (SN), backup, 

high availability (HA) 

1 Introduction 

Incoming flows to a network should be processed by 

a set of service functions (SFs) or middleboxes (e.g., 

firewall (FW), network address translator (NAT), and 

deep packet inspection (DPI)) to meet service 

requirements and operator's policies. Service function 

chaining (SFC) defines an ordered set of SFs for a 

specific flow and steers the flow to be processed by 

them [1]. With advances of software-defined 

networking (SDN), SDN-based SFC has emerged and 

widely discussed in the literature because it can 

provide more flexible SFC management. For example, 

Qazi et al. [2] introduced a middlebox policy 

enforcement layer for SDN-based SFC, which 

translates policy rules posed by administrators and 

solves load balancing and loop avoidance issues. 

Meanwhile, Fayazbakhsh et al. [3] devised a technique 

to add a tag to the packet header to control SFC and 

address SF placement issues. 

One of key requirements for SDN-based SFC is high 

availability (HA) at the control and data planes. 

Unfortunately, most previous studies have only 

focused on HA of the controllers [4-5] instead of the 

SFC data plane. Even though the SDN controller is the 

key element in SDN-based SFC, different kinds of 

failures can occur at the data plane (e.g., link failure 

between two SF instances or SF instance failure). 

Therefore, a failover mechanism for the data plane 

should be also devised for HA in SDN-based SFC. In 

addition, previous failover mechanisms are based on 

reactive operation, i.e., the SDN controller re-finds 

available service function path (SFP) or SF for a failure 

event. Such reactive operation may lead to the 

increased failover time, which will degrade the overall 

performance. 

To address these drawbacks, we propose a two-stage 

failover mechanism, which consists of the local repair 

and end-to-end repair stages. In the proposed 

mechanism, a secondary SFP is pre-computed, which 

is maximally disjointed with the primary one. At the 

same time, backup service function instances (SFIs) 

are prepared for individual SFIs, which can guarantee 

minimal failover time. At the local repair stage, a 

failure at SFI is first detected by means of a 

bidirectional forwarding detection (BFD) protocol [6]. 

If a failure is detected, the flow is locally repaired by 

redirecting the flow to the backup SFI. Even with the 

local repair stage, a backup SFI failure or link failure 

between SFIs cannot be handled. For such cases, the 

end-to-end repair stage is triggered by replacing the 

primary SFP with the secondary SFP. For performance 

evaluation, we conducted extensive simulations in 

terms of failure recovery time under SFI and link 

failures. Simulation results show the proposed 

mechanism can reduce the recovery time by 50%-75% 

compared with the conventional mechanism. 

The contribution of this paper is two-fold: 1) even 

though failover mechanisms are widely discussed for 

SDN controllers, little work on HA in SFC has been 

reported in the literature. The proposed two-stage 

failover mechanism is a tailored one for HA in SFC, 
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and 2) the two-stage failover mechanism can deal with 

link failures as well as SFI failures, and can reduce the 

recovery time significantly by choosing the most 

appropriate secondary SFP and backup SFI based on 

the optimization framework. In particular, the 

optimization framework considers a salient feature for 

stateful SFs, i.e., synchronization overhead between 

SFIs and backup SFIs. 

The remainder of this paper is organized as follows. 

Section 2 surveys the related works. Section 3 and 

Section 4 describe the system model and the two-stage 

failover mechanism, respectively. Section 5 presents 

simulation results and compares the results of the 

proposed mechanism with the conventional mechanism. 

Section 6 concludes this paper. 

2 Related Work 

To guarantee the HA of SDN, a number of studies 

have been reported and most of them focus on the HA 

in the control plane. Miller et al. [4] investigated an 

optimal controller placement such that connectivity is 

maximized for HA. To this end, Miller et al. chooses 

the positions of controllers that provide the highest 

number of disjoint paths between switches and 

controllers. Botelho et al. [5], proposed a fault-tolerant 

controller architecture with a data store based on the 

replicated state machine of the control plane and a 

lease management algorithm selecting a master 

controller for fault-tolerant SDN. These studies only 

consider the HA for the control plane, not the data 

plane. However, in SDN networks, a failure event can 

occur in the data plane including network link, SF, and 

SFF. Regarding the data plane, only a few works have 

been recently introduced. Desai et al. [7] proposed an 

algorithm that utilizes a detection method to check the 

link failures among neighboring switches and notifies 

the link failures to all the neighboring switches in order 

to refrain from sending messages to the failed link. 

Kempf et al. [8] proposed to implement a monitoring 

function on OpenFlow switches without posing a 

processing load on the controller. However, [7-8] 

consist only of detecting link failures without 

restoration after link failures. On the other hand, 

Staessens et al. [9] considered data plane resiliency 

both in terms of restoration and protection. For 

restoration, after the controller gets a link failure 

notification, a list is made of all affected paths. 

Afterwards, a restoration path is calculated using a 

shortest path algorithm on the remaining topology. 

Since switches which are on both the working and the 

restoration path are affected, the flow entry is modified. 

For protection, a backup path is precomputed and 

established with the original path. However, in [7-9], 

these approaches, despite their ability to restore link 

failures, have several drawbacks. For instance, the type 

of SF and the failure of SFI are not considered in [7-9]. 

Therefore, the proposed algorithms in [7-9] cannot be 

directly applied to the SFC data plane, a new 

mechanism to restore both link failures and SFI 

failures needs to be devised.  

3 System model 

In this section, we describe the underlying network 

model for the two-stage failover mechanism and 

relevant protocols (i.e., BFD and network service 

header (NSH)). 

3.1 Network Model 

Figure 1 shows the network model based on the SFC 

architecture [10] consisting of a SDN controller, 

ingress/egress nodes, service function forwarders 

(SFFs), and service nodes (SNs). The SDN controller 

has global knowledge on the network and computes 

SFPs for given conditions, and the controller is placed 

D hops away from the ingress node. The ingress node 

in the SFC domain classifies incoming flows based on 

the pre-defined network policy. Meanwhile, the egress 

node forwards the processed packets to the outside of 

the SFC domain. SN denotes a physical or virtual 

element that has the constraints on resources and hosts 

one or more SFIs by means of NFV [11]. Note that SN 

can be connected to one or more SFFs. Lastly, SFFs 

are responsible for forwarding flows to one or more 

connected SNs and handling packets coming back from 

SNs. It is assumed that the link between aforementioned 

nodes supports bidirectional communications. 

 

Figure 1. Network model 

The network model can be represented by ( , )G V E=  

that consists of vertices (i.e., nodes) and edges. The set 

of nodes, V , consists of the sets of SNs (denoted by 

SN
V ), SFFs (denoted by 

SFF
V ), ingress nodes (denoted  

by 
ing

V ), and egress nodes (denoted by 
eg

V ). On the  

other hand, ( , )i j  represents the link between node i   

and node j , which belongs to the set of links, E. 
,i j

L   

denotes a binary variable to represent whether or not  

node i  and node j are inter-connected, and 
,i j

C   

represents the bandwidth of the link ( , )i j . 

3.2 BFD and NSH Protocols 

In this paper, we use BFD protocol as a failure 

detection method and exploit NSH to contain service 
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path information. BFD [6] is a detection protocol 

designed to provide fast forwarding path failure 

detection in routing protocols, which is independent of 

media types and topologies. The procedure of BFD is 

as follows. BFD implements control/echo messages to 

detect liveness of links or paths between end-points. 

First, a BFD session is established by a session request 

between two nodes and a failure detection period is 

configured. After that, BFD peers send periodic control 

packets to detect liveness. A node receiving a control 

message, replies with an echo message containing its 

respective session status. If no reply message is 

received, a failure is considered and the BFD session is 

down. In this manner, BFD achieves faster failure 

detection and restoration. Throughout this paper, the 

use of BFD is assumed to detect link and SFI failures. 

NSH [12] is a protocol to contain metadata and 

service path information in SFC. By using NSH, 

different next hops for each SFF can be established. 

That is, different next hops for primary SFP, secondary 

SFP, and backup SFI can be designated by assigning 

different weights, which facilitates the implementation 

of the two-stage failover mechanism. 

4 Two-stage Failover Mechanism 

In this section, we describe the two-stage failover 

mechanism in detail. In the proposed mechanism, 

backup SFIs are prepared for individual SFIs, which 

can guarantee minimal failover time. At the same time, 

a secondary SFP is pre-computed, which is maximally 

disjointed with the primary one. We first formulate an 

integer linear programming (ILP) problem to configure 

the backup SFIs and secondary SFP. After that, we 

explain the local repair stage and the end-to-end repair 

stage. 

4.1 Configuration of Secondary SFP and 

Backup SFI 

To trigger the local repair and end-to-end repair 

stages, the backup SFIs and secondary SFP should be 

pre-configured. To this end, the following ILP problem 

is formulated and important notations for the ILP 

problem are summarized in Table 1. Note that the 

formulated ILP problem can be solved by a well-

known ILP solvers such as IBM CPLEX and GLPK. 

When a backup SFI is selected and used, we need to 

change SFP after restoring by the backup SFI. 

Therefore, backup SFI selection has to consider the 

performance of restored SFP. In other words, by 

minimizing the increase of the SFP length after the 

restoration, the impact of the restoration can be 

mitigated. To obtain the backup SFIs considering the 

increased length after restoration, 
, ,

IN

m i jy  and 
, ,

OUT

m i jy  are 

defined. 
, ,

IN

m i jy  and 
, ,

OUT

m i jy  are binary variables that 

represent whether or not node i forwards packets to 

node j for processing the packets at the m-th backup 
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SFI and to represent whether or not node I forwards 

packets to node j to deliver packets to the (m+1)-st SFI, 

respectively. Then, the length of routing path from the 

(m-1)-st SFI to the (m+1)-st SFI after replacing with 

the m-th backup SFI can be calculated by 

, , , ,

( )IN OUT

i V j V m i j m i jy y
∈ ∈

∑ ∑ + . Meanwhile, the length of 

original routing path from the (m-1)-st SFI to the 

(m+1)-st SFI in the primary SFP can be represented as 

, , 1, ,
( )

i V j V m i j m i j
x x

∈ ∈ +
∑ ∑ + . Consequently, the increased 

length after replacing with the m-th backup SFI is 

denoted by 
, , , , , , 1, ,

{( ) ( )}IN OUT

i V j V m i j m i j m i j m i jx y x x
∈ ∈ +

∑ ∑ + − + . 

Figure 2 shows an example when SFC is specified 

as FW-NAT-DPI and the primary SFP is ingress node-

SFF1-SN1-SFF1-SFF2-SN2-SFF2-SFF3-SN3-SFF3-

egress node. If FW in SN4 is selected as a backup SFI, 

the replaced SFP will be ingress node-SFF4-SN4-

SFF4-SFF5-SFF2-SN2-SFF2-SFF3-SN3-SFF3-egress 

node and the increased length becomes 1. Since our 

goal is to minimize the increase of the SFP length after 

restoration, the objective function for constructing the 

backup SFI can be defined as  

 

Figure 2. Backup SFI example 

 
, , , , , , 1, ,

min {( ) ( )}IN OUT

i V j V m i j m i j m i j m i jy y x x
∈ ∈ +

∑ ∑ + − +  (1) 

On the one hand, if backup SFI or link between SFIs 

fails, restoration with backup SFI is not available. 

Therefore, the end-to-end restoration with secondary 

SFP has to be triggered for such cases. To maximize 

the efficiency of the secondary SFP, the effect of 

failure in the primary SFP on the secondary SFP 

should be minimized. To achieve this goal, the number 

of links that are shared between the primary and 

secondary SFP should be minimized. The number of 

the shared links can be represented by 

1 2 1 1 2

1 1

1 1 , , , , , ,
{( ) }m m

N N

i V j V m m m i j m j i m i j
x x y

+ +

∈ ∈ = =
∑ ∑ ∑ ∑ + , where 

, ,m i j
x and 

, ,m i j
y  are binary variables to represent 

whether or not node i  forwards packets to node j  for 

processing at the m-th SFI in the primary SFP and 

secondary SFP, respectively. In this case, since the 

primary SFP is given in advance, the value of 
, ,m i j

x  is 

known. 
m

N  is the number of SFs in SFC, and m is the 

order of SF in SFC. Note that since a link supports 

bidirectional communications, both 
1
, ,m i j

x  and 
1
, ,m j u

x  

have to be considered to count the number of joint 

links between primary and secondary SFP. 

Consequently, the objective function for constructing 

the secondary SFP can be represented by  

 
1 2 1 1 2

1 1

1 1 , , , , , ,
min {( ) }m m

N N

i V j V m m m i j m j i m i j
x x y

+ +

∈ ∈ = =
∑ ∑ ∑ ∑ + . (2) 

To solve (1) and (2), we have the following 

constraints. First of all, the traffic volume for state 

synchronization between SFIs and the backup SFIs 

(see double lines in Figure 2) should be carefully 

managed for stateful SFs (e.g., DPI and NAT). 

Specifically, the total traffic volume for synchronization 

should be smaller than or equal to a pre-defined 

threshold, δ , and thus we have  

 
1 , ,

,
m

N

i V j V m m i j m
z B δ

∈ ∈ =
∑ ∑ ∑ ≤  (3) 

where 
, ,m i j

z  is a binary variable to represent whether or 

not node i  forwards packets to node j  for 

synchronization between the m-th SFI and the backup 

SFI, and 
m

B  is the link bandwidth needed for 

synchronization. 

On the one hand, flow constraints of secondary SFP 

can be described as follows. 

 

 
, , , ,

0,j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈ , (4) 

 
1, , 1, ,

1,j V j i k V i k ingy y i V
∈ ∈

∑ −∑ = − ∀ ∈ , (5) 

 
1, , 1, ,

1,
m m

j V N j i k V N i k egy y i V
∈ + ∈ +

∑ −∑ = ∀ ∈ ,  (6) 

 
, , 1, ,

, , ,m i j m j i SFF SNy y i V m j V
+

= ∀ ∈ ∀ ∈ ∈  (7) 

 {1, ..., }
m

m N∀ ∈  

 

(4) means that the traffic that comes into any SFF 

should go out to another SFF. Meanwhile, (5) indicates 

that the ingress node delivers traffic to other nodes, and 

(6) represents that the flow is terminated when the 

traffic is delivered to the egress node. Finally, (7) 

represents that the traffic delivered from an SFF to an 

SN should be transmitted to the SFF after processing at 

the SF. 

On the other hand, flow constraints of backup SFI 

can be described as follows. 
 

 
, , , ,

0, ,
IN IN

j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈  (8) 

 
, , , ,

0, ,
OUT OUT

j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈  (9) 

 
1, , 1, ,

0, ,
IN IN

j V j i k V i k ingy y i V
∈ ∈

∑ −∑ = ∀ ∈  (10) 
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1, , 1, ,

0, ,
m m

OUT OUT

j V N j i k V N i k egy y i V
∈ + ∈ +

∑ −∑ = ∀ ∈  (11) 

 
, , , , , , , ,

, ,

IN IN OUT OUT

m i j m j i m j i m i jy y y y= =  (12) 

 , ,
SN SN

i V i V∀ ∈ ∀ ∈ {1, ..., }.
m

m N∀ ∈  

As a capacity constraint, the total bandwidth used to 

transmit traffic should be equal to or smaller than the 

link capacity, 
,i j

C . Therefore, we have the following 

capacity constraint of secondary SFP: 

 
1 , , , , ,

, , ,
m

N

m m i j m m j i m i j
y b y b C i j V

=

∑ + ≤ ∀ ∈   (13) 

 

where 
1 , , , ,

m
N

m m i j m m j i m
y b y b

=

∑ +  represents the total 

bandwidth to transmit incoming traffic, and 
m
b  is the 

link bandwidth needed for flow transmission. Likewise, 

the capacity constraint of backup SFI is as follows. 

 
1 , , , , , ,

m
N IN IN OUT

m m i j m m j i m m i j my b y b y b
=

∑ + + +  (14) 

 
, , ,

, , ,

OUT

m j i m i jy b C i j V≤ ∀ ∈   

 

Additionally, in selecting the secondary SFP, all SFs 

of SFC should be processed and the corresponding 

constraint is given by 

 
1 1 , , , , ,

1H T
N N

i V h t i h t m i h m t
Q w f

∈ = =
∑ ∑ ∑ = .  (15) 

, ,i h t
Q  is a binary variable denotes whether or not SFI 

h  in SN i  is type t, 
, ,m i h

w  is a binary variable denotes 

whether or not SFI h  in SN i  is the m-th backup SFI 

and 
,m t

f  is a binary variable denotes whether or not the 

m-th SF of SFC is type t . 

4.2 Local Repair and End-To-End Repair 

Stages 

Figure 3 shows the overall procedure of the two-

stage failover mechanism. When a new flow is 

generated, a primary SFP for a given SFC is 

constructed. Note that the primary SFP can be 

configured by different methods (e.g., [13]), which is 

beyond scope of this paper. After that, the SFIs and 

links for the primary SFP are used as input parameters 

into the ILP tool. That is, a backup SFI is prepared for 

each SFI by means of the ILP formulation. In this case, 

it is assumed that the controller maintains a global 

view on the link capacity and the SFI type. At the same 

time, a secondary SFP is configured based on the ILP 

formulation to substitute the primary SFP for link or 

backup SFI failures. Only when all of these 

configurations are set, the flow is serviced accordingly. 

Therefore, if the backup SFIs and secondary SFP are 

preconfigured, the flow can be serviced with the 

minimal service interruption time in case of a link 

failure or a SFI failure. 

 

Figure 3. Flow chart 

During the service time, if a SFI fails, the failure is 

detected by means of BFD. In this case, the local repair 

stage is initiated independent of the SDN controller. 

First of all, the failed SFI is replaced with the backup 

SFI without replacing whole SFP, and the previous SFI 

of the failed SFI forwards the flow to the replaced 

backup SFI. Therefore, the flow can be serviced 

continuously. Even with the local repair stage, a link 

failure between SFIs cannot be handled. Also, if SFI 

and backup SFI fail together at the same time, the local 

repair is not feasible. Therefore, for such cases, the 

end-to-end repair stage is required by substituting the 

primary SFP with the preconfigured secondary SFP. 

Specifically, when a failure is notified to the ingress 

node, the ingress node reconfigures its forwarding rule 

on the flow towards the secondary SFP and thus the 

flow can be serviced with minimal interruption. 

Additionally, once the controller is informed of the 

failure of SFI or link, it can reconfigure new backup 

SFI and secondary SFP without traffic interruption. 

5 Simulation Results 

For performance evaluation, we compare the two-

stage failover mechanism with the conventional 

mechanism [14], where the restoration for the link or 

SF failure is conducted by the controller. Specifically, 

when a link or SF failure is detected, the failure 

notification message is sent to the controller. Then, the 

controller establishes a new SFP and sends the flow 

table update message to switches. Finally, flow tables 

of switches are updated to deploy the new SFP and the 

flow can be serviced again. Simulations are conducted 

on the well-known network topology (i.e., Abilene 

network of Internet2) [15]. The nodes in Abilene 

network are mapped to SFFs, ingress/egress nodes, and 

six SNs are connected to some SFFs. The total link 

capacity is uniformly set as 10 Gbps for all links. In 
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this simulation, the CPU capacity is only considered as 

a resource type, and all SNs can accommodate at most 

two SFIs. The given SFC is FW-NAT-DPI and the 

flow demand of SFC is set to 3 Gbps. On the other 

hand, the default time to compute a new SFP in the 

conventional mechanism is assumed as 50 ms, and the 

propagation time varies from 10 ms to 30 ms. The 

required link bandwidths (in Gbps) for synchronization 

of NAT and DPI are 10% and 5% of the total link 

capacity respectively, and δ  is set to 30. The detection 

of SFI and link failures in both mechanisms is done by 

the BFD protocol. 

5.1 Effect of Propagation Time 

Figure 4 shows the recovery time for SFI and link 

failures as a function of the propagation time. Note that 

since the procedures of the conventional failover 

mechanism to deal with SFI and link failures are same, 

the recovery time for two cases is equal. It can be seen 

that the recovery times of the proposed and 

conventional mechanisms increase as the propagation 

time increases. This is because the time to transmit 

messages for restoring SFI and link failures increases 

with the increase of the propagation time. 

 

Figure 4. Effect of propagation time 

On the other hand, it can be also seen that the 

recovery time of the proposed mechanism is lower than 

that of the conventional mechanism. This can be 

explained as follows. In the conventional mechanism, 

when a SFI failure occurs, 

it is reported to the controller and the controller 

establishes a new SFP and sends flow table update 

messages to switches. As a result, longer recovery time 

is expected and it is highly affected by the propagation 

time. Meanwhile, in the proposed mechanism, the 

failed SFI is replaced with the backup SFI right after a 

SFI failure is detected. That is, the recovery time for 

the SFI failure in the proposed mechanism only 

includes the SFI failure detection time by BFD. In 

addition, in case of a link failure, the ingress node 

redirects the flow to the secondary SFP without any 

intervention of the controller. Therefore, the proposed 

mechanism shows the reduced recovery time for both 

link and SFI failures. 

5.2 Effect of D 

Figure 5 shows the recovery time for SFI and link 

failures when the distance between the controller and 

ingress node, D , is changed. Note that the controller 

can be reached only through the ingress node in our 

system model. As shown in Figure 5, the recovery time 

of the conventional mechanism increases linearly to the 

increase of D  because SFI or link failures should be 

reported to the controller and the controller has to send 

flow table update messages to switches. On the 

contrary, in the proposed mechanism, the recovery 

time is not affected by D  since the pre-configured 

backup SFI or secondary SFP is exploited without 

reporting to the controller. In short, the gain of the 

proposed mechanism in terms of the recovery time 

becomes apparent as D  increases. 

 

Figure 5. Effect of D 

6 Conclusion 

In this paper, we proposed a two-stage failover 

mechanism to provide HA in SDN-based in SFC. By 

means of pre-established secondary SFP and backup 

SFIs, the proposed two-stage failover mechanism 

guarantees shorter failover time, which is verified by 

extensive simulations. In our future work, we will 

implement the two-stage failover mechanism in open 

source (e.g., Open Daylight (ODL))-based testbeds and 

carry out extensive performance study. 
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