
A Two-Stage Failover Mechanism for High Availability in Service Function Chaining 229

A Two-Stage Failover Mechanism for High Availability

in Service Function Chaining

Hosung Baek1, Haneul Ko1, Gwangwoo Park1, Sangheon Pack1, Jiyoung Kwak2*

1 School of Electrical Engineering, Korea University, Korea
2 Programmable Infra Research Section, ETRI, Korea

{gh1emd, st_basket, kwoo17, shpack}@korea.ac.kr, jiyoung@etri.re.kr

*Corresponding Author: Sangheon Pack; E-mail: shpack@korea.ac.kr

DOI: 10.3966/160792642018011901022

Abstract

Service function chaining (SFC) enables specific

network flows to be processed through an ordered set of

service functions. In this paper, we propose a two-stage

failover mechanism to provide high availability (HA) in

SFC. In the proposed mechanism, a secondary service

function path (SFP) is pre-computed, which is maximally

disjointed with the primary SFP, and a backup service

function instance (SFI) is prepared for each service

function. For a failure event, the first local repair stage is

examined by means of the preconfigured backup SFI. If

the backup SFI is not available and/or any link is failed,

the second end-to-end repair stage is triggered by

replacing the primary SFP with the secondary SFP.

Simulation results demonstrate that the proposed failover

mechanism can reduce the recovery time by 50%-75%

compared to the conventional approach.

Keywords: Service function chaining (SFC), service

function (SF), service node (SN), backup,

high availability (HA)

1 Introduction

Incoming flows to a network should be processed by

a set of service functions (SFs) or middleboxes (e.g.,

firewall (FW), network address translator (NAT), and

deep packet inspection (DPI)) to meet service

requirements and operator's policies. Service function

chaining (SFC) defines an ordered set of SFs for a

specific flow and steers the flow to be processed by

them [1]. With advances of software-defined

networking (SDN), SDN-based SFC has emerged and

widely discussed in the literature because it can

provide more flexible SFC management. For example,

Qazi et al. [2] introduced a middlebox policy

enforcement layer for SDN-based SFC, which

translates policy rules posed by administrators and

solves load balancing and loop avoidance issues.

Meanwhile, Fayazbakhsh et al. [3] devised a technique

to add a tag to the packet header to control SFC and

address SF placement issues.

One of key requirements for SDN-based SFC is high

availability (HA) at the control and data planes.

Unfortunately, most previous studies have only

focused on HA of the controllers [4-5] instead of the

SFC data plane. Even though the SDN controller is the

key element in SDN-based SFC, different kinds of

failures can occur at the data plane (e.g., link failure

between two SF instances or SF instance failure).

Therefore, a failover mechanism for the data plane

should be also devised for HA in SDN-based SFC. In

addition, previous failover mechanisms are based on

reactive operation, i.e., the SDN controller re-finds

available service function path (SFP) or SF for a failure

event. Such reactive operation may lead to the

increased failover time, which will degrade the overall

performance.

To address these drawbacks, we propose a two-stage

failover mechanism, which consists of the local repair

and end-to-end repair stages. In the proposed

mechanism, a secondary SFP is pre-computed, which

is maximally disjointed with the primary one. At the

same time, backup service function instances (SFIs)

are prepared for individual SFIs, which can guarantee

minimal failover time. At the local repair stage, a

failure at SFI is first detected by means of a

bidirectional forwarding detection (BFD) protocol [6].

If a failure is detected, the flow is locally repaired by

redirecting the flow to the backup SFI. Even with the

local repair stage, a backup SFI failure or link failure

between SFIs cannot be handled. For such cases, the

end-to-end repair stage is triggered by replacing the

primary SFP with the secondary SFP. For performance

evaluation, we conducted extensive simulations in

terms of failure recovery time under SFI and link

failures. Simulation results show the proposed

mechanism can reduce the recovery time by 50%-75%

compared with the conventional mechanism.

The contribution of this paper is two-fold: 1) even

though failover mechanisms are widely discussed for

SDN controllers, little work on HA in SFC has been

reported in the literature. The proposed two-stage

failover mechanism is a tailored one for HA in SFC,

230 Journal of Internet Technology Volume 19 (2018) No.1

and 2) the two-stage failover mechanism can deal with

link failures as well as SFI failures, and can reduce the

recovery time significantly by choosing the most

appropriate secondary SFP and backup SFI based on

the optimization framework. In particular, the

optimization framework considers a salient feature for

stateful SFs, i.e., synchronization overhead between

SFIs and backup SFIs.

The remainder of this paper is organized as follows.

Section 2 surveys the related works. Section 3 and

Section 4 describe the system model and the two-stage

failover mechanism, respectively. Section 5 presents

simulation results and compares the results of the

proposed mechanism with the conventional mechanism.

Section 6 concludes this paper.

2 Related Work

To guarantee the HA of SDN, a number of studies

have been reported and most of them focus on the HA

in the control plane. Miller et al. [4] investigated an

optimal controller placement such that connectivity is

maximized for HA. To this end, Miller et al. chooses

the positions of controllers that provide the highest

number of disjoint paths between switches and

controllers. Botelho et al. [5], proposed a fault-tolerant

controller architecture with a data store based on the

replicated state machine of the control plane and a

lease management algorithm selecting a master

controller for fault-tolerant SDN. These studies only

consider the HA for the control plane, not the data

plane. However, in SDN networks, a failure event can

occur in the data plane including network link, SF, and

SFF. Regarding the data plane, only a few works have

been recently introduced. Desai et al. [7] proposed an

algorithm that utilizes a detection method to check the

link failures among neighboring switches and notifies

the link failures to all the neighboring switches in order

to refrain from sending messages to the failed link.

Kempf et al. [8] proposed to implement a monitoring

function on OpenFlow switches without posing a

processing load on the controller. However, [7-8]

consist only of detecting link failures without

restoration after link failures. On the other hand,

Staessens et al. [9] considered data plane resiliency

both in terms of restoration and protection. For

restoration, after the controller gets a link failure

notification, a list is made of all affected paths.

Afterwards, a restoration path is calculated using a

shortest path algorithm on the remaining topology.

Since switches which are on both the working and the

restoration path are affected, the flow entry is modified.

For protection, a backup path is precomputed and

established with the original path. However, in [7-9],

these approaches, despite their ability to restore link

failures, have several drawbacks. For instance, the type

of SF and the failure of SFI are not considered in [7-9].

Therefore, the proposed algorithms in [7-9] cannot be

directly applied to the SFC data plane, a new

mechanism to restore both link failures and SFI

failures needs to be devised.

3 System model

In this section, we describe the underlying network

model for the two-stage failover mechanism and

relevant protocols (i.e., BFD and network service

header (NSH)).

3.1 Network Model

Figure 1 shows the network model based on the SFC

architecture [10] consisting of a SDN controller,

ingress/egress nodes, service function forwarders

(SFFs), and service nodes (SNs). The SDN controller

has global knowledge on the network and computes

SFPs for given conditions, and the controller is placed

D hops away from the ingress node. The ingress node

in the SFC domain classifies incoming flows based on

the pre-defined network policy. Meanwhile, the egress

node forwards the processed packets to the outside of

the SFC domain. SN denotes a physical or virtual

element that has the constraints on resources and hosts

one or more SFIs by means of NFV [11]. Note that SN

can be connected to one or more SFFs. Lastly, SFFs

are responsible for forwarding flows to one or more

connected SNs and handling packets coming back from

SNs. It is assumed that the link between aforementioned

nodes supports bidirectional communications.

Figure 1. Network model

The network model can be represented by (,)G V E=

that consists of vertices (i.e., nodes) and edges. The set

of nodes, V , consists of the sets of SNs (denoted by

SN
V), SFFs (denoted by

SFF
V), ingress nodes (denoted

by
ing

V), and egress nodes (denoted by
eg

V). On the

other hand, (,)i j represents the link between node i

and node j , which belongs to the set of links, E.
,i j

L

denotes a binary variable to represent whether or not

node i and node j are inter-connected, and
,i j

C

represents the bandwidth of the link (,)i j .

3.2 BFD and NSH Protocols

In this paper, we use BFD protocol as a failure

detection method and exploit NSH to contain service

A Two-Stage Failover Mechanism for High Availability in Service Function Chaining 231

path information. BFD [6] is a detection protocol

designed to provide fast forwarding path failure

detection in routing protocols, which is independent of

media types and topologies. The procedure of BFD is

as follows. BFD implements control/echo messages to

detect liveness of links or paths between end-points.

First, a BFD session is established by a session request

between two nodes and a failure detection period is

configured. After that, BFD peers send periodic control

packets to detect liveness. A node receiving a control

message, replies with an echo message containing its

respective session status. If no reply message is

received, a failure is considered and the BFD session is

down. In this manner, BFD achieves faster failure

detection and restoration. Throughout this paper, the

use of BFD is assumed to detect link and SFI failures.

NSH [12] is a protocol to contain metadata and

service path information in SFC. By using NSH,

different next hops for each SFF can be established.

That is, different next hops for primary SFP, secondary

SFP, and backup SFI can be designated by assigning

different weights, which facilitates the implementation

of the two-stage failover mechanism.

4 Two-stage Failover Mechanism

In this section, we describe the two-stage failover

mechanism in detail. In the proposed mechanism,

backup SFIs are prepared for individual SFIs, which

can guarantee minimal failover time. At the same time,

a secondary SFP is pre-computed, which is maximally

disjointed with the primary one. We first formulate an

integer linear programming (ILP) problem to configure

the backup SFIs and secondary SFP. After that, we

explain the local repair stage and the end-to-end repair

stage.

4.1 Configuration of Secondary SFP and

Backup SFI

To trigger the local repair and end-to-end repair

stages, the backup SFIs and secondary SFP should be

pre-configured. To this end, the following ILP problem

is formulated and important notations for the ILP

problem are summarized in Table 1. Note that the

formulated ILP problem can be solved by a well-

known ILP solvers such as IBM CPLEX and GLPK.

When a backup SFI is selected and used, we need to

change SFP after restoring by the backup SFI.

Therefore, backup SFI selection has to consider the

performance of restored SFP. In other words, by

minimizing the increase of the SFP length after the

restoration, the impact of the restoration can be

mitigated. To obtain the backup SFIs considering the

increased length after restoration,
, ,

IN

m i jy and
, ,

OUT

m i jy are

defined.
, ,

IN

m i jy and
, ,

OUT

m i jy are binary variables that

represent whether or not node i forwards packets to

node j for processing the packets at the m-th backup

232 Journal of Internet Technology Volume 19 (2018) No.1

SFI and to represent whether or not node I forwards

packets to node j to deliver packets to the (m+1)-st SFI,

respectively. Then, the length of routing path from the

(m-1)-st SFI to the (m+1)-st SFI after replacing with

the m-th backup SFI can be calculated by

, , , ,

()IN OUT

i V j V m i j m i jy y
∈ ∈

∑ ∑ + . Meanwhile, the length of

original routing path from the (m-1)-st SFI to the

(m+1)-st SFI in the primary SFP can be represented as

, , 1, ,
()

i V j V m i j m i j
x x

∈ ∈ +
∑ ∑ + . Consequently, the increased

length after replacing with the m-th backup SFI is

denoted by
, , , , , , 1, ,

{() ()}IN OUT

i V j V m i j m i j m i j m i jx y x x
∈ ∈ +

∑ ∑ + − + .

Figure 2 shows an example when SFC is specified

as FW-NAT-DPI and the primary SFP is ingress node-

SFF1-SN1-SFF1-SFF2-SN2-SFF2-SFF3-SN3-SFF3-

egress node. If FW in SN4 is selected as a backup SFI,

the replaced SFP will be ingress node-SFF4-SN4-

SFF4-SFF5-SFF2-SN2-SFF2-SFF3-SN3-SFF3-egress

node and the increased length becomes 1. Since our

goal is to minimize the increase of the SFP length after

restoration, the objective function for constructing the

backup SFI can be defined as

Figure 2. Backup SFI example

, , , , , , 1, ,

min {() ()}IN OUT

i V j V m i j m i j m i j m i jy y x x
∈ ∈ +

∑ ∑ + − + (1)

On the one hand, if backup SFI or link between SFIs

fails, restoration with backup SFI is not available.

Therefore, the end-to-end restoration with secondary

SFP has to be triggered for such cases. To maximize

the efficiency of the secondary SFP, the effect of

failure in the primary SFP on the secondary SFP

should be minimized. To achieve this goal, the number

of links that are shared between the primary and

secondary SFP should be minimized. The number of

the shared links can be represented by

1 2 1 1 2

1 1

1 1 , , , , , ,
{() }m m

N N

i V j V m m m i j m j i m i j
x x y

+ +

∈ ∈ = =
∑ ∑ ∑ ∑ + , where

, ,m i j
x and

, ,m i j
y are binary variables to represent

whether or not node i forwards packets to node j for

processing at the m-th SFI in the primary SFP and

secondary SFP, respectively. In this case, since the

primary SFP is given in advance, the value of
, ,m i j

x is

known.
m

N is the number of SFs in SFC, and m is the

order of SF in SFC. Note that since a link supports

bidirectional communications, both
1
, ,m i j

x and
1
, ,m j u

x

have to be considered to count the number of joint

links between primary and secondary SFP.

Consequently, the objective function for constructing

the secondary SFP can be represented by

1 2 1 1 2

1 1

1 1 , , , , , ,
min {() }m m

N N

i V j V m m m i j m j i m i j
x x y

+ +

∈ ∈ = =
∑ ∑ ∑ ∑ + . (2)

To solve (1) and (2), we have the following

constraints. First of all, the traffic volume for state

synchronization between SFIs and the backup SFIs

(see double lines in Figure 2) should be carefully

managed for stateful SFs (e.g., DPI and NAT).

Specifically, the total traffic volume for synchronization

should be smaller than or equal to a pre-defined

threshold, δ , and thus we have

1 , ,

,
m

N

i V j V m m i j m
z B δ

∈ ∈ =
∑ ∑ ∑ ≤ (3)

where
, ,m i j

z is a binary variable to represent whether or

not node i forwards packets to node j for

synchronization between the m-th SFI and the backup

SFI, and
m

B is the link bandwidth needed for

synchronization.

On the one hand, flow constraints of secondary SFP

can be described as follows.

, , , ,

0,j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈ , (4)

1, , 1, ,

1,j V j i k V i k ingy y i V
∈ ∈

∑ −∑ = − ∀ ∈ , (5)

1, , 1, ,

1,
m m

j V N j i k V N i k egy y i V
∈ + ∈ +

∑ −∑ = ∀ ∈ , (6)

, , 1, ,

, , ,m i j m j i SFF SNy y i V m j V
+

= ∀ ∈ ∀ ∈ ∈ (7)

 {1, ..., }
m

m N∀ ∈

(4) means that the traffic that comes into any SFF

should go out to another SFF. Meanwhile, (5) indicates

that the ingress node delivers traffic to other nodes, and

(6) represents that the flow is terminated when the

traffic is delivered to the egress node. Finally, (7)

represents that the traffic delivered from an SFF to an

SN should be transmitted to the SFF after processing at

the SF.

On the other hand, flow constraints of backup SFI

can be described as follows.

, , , ,

0, ,
IN IN

j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈ (8)

, , , ,

0, ,
OUT OUT

j V m j i k V m i k SFFy y i V
∈ ∈

∑ −∑ = ∀ ∈ (9)

1, , 1, ,

0, ,
IN IN

j V j i k V i k ingy y i V
∈ ∈

∑ −∑ = ∀ ∈ (10)

A Two-Stage Failover Mechanism for High Availability in Service Function Chaining 233

1, , 1, ,

0, ,
m m

OUT OUT

j V N j i k V N i k egy y i V
∈ + ∈ +

∑ −∑ = ∀ ∈ (11)

, , , , , , , ,

, ,

IN IN OUT OUT

m i j m j i m j i m i jy y y y= = (12)

 , ,
SN SN

i V i V∀ ∈ ∀ ∈ {1, ..., }.
m

m N∀ ∈

As a capacity constraint, the total bandwidth used to

transmit traffic should be equal to or smaller than the

link capacity,
,i j

C . Therefore, we have the following

capacity constraint of secondary SFP:

1 , , , , ,

, , ,
m

N

m m i j m m j i m i j
y b y b C i j V

=

∑ + ≤ ∀ ∈ (13)

where
1 , , , ,

m
N

m m i j m m j i m
y b y b

=

∑ + represents the total

bandwidth to transmit incoming traffic, and
m
b is the

link bandwidth needed for flow transmission. Likewise,

the capacity constraint of backup SFI is as follows.

1 , , , , , ,

m
N IN IN OUT

m m i j m m j i m m i j my b y b y b
=

∑ + + + (14)

, , ,

, , ,

OUT

m j i m i jy b C i j V≤ ∀ ∈

Additionally, in selecting the secondary SFP, all SFs

of SFC should be processed and the corresponding

constraint is given by

1 1 , , , , ,

1H T
N N

i V h t i h t m i h m t
Q w f

∈ = =
∑ ∑ ∑ = . (15)

, ,i h t
Q is a binary variable denotes whether or not SFI

h in SN i is type t,
, ,m i h

w is a binary variable denotes

whether or not SFI h in SN i is the m-th backup SFI

and
,m t

f is a binary variable denotes whether or not the

m-th SF of SFC is type t .

4.2 Local Repair and End-To-End Repair

Stages

Figure 3 shows the overall procedure of the two-

stage failover mechanism. When a new flow is

generated, a primary SFP for a given SFC is

constructed. Note that the primary SFP can be

configured by different methods (e.g., [13]), which is

beyond scope of this paper. After that, the SFIs and

links for the primary SFP are used as input parameters

into the ILP tool. That is, a backup SFI is prepared for

each SFI by means of the ILP formulation. In this case,

it is assumed that the controller maintains a global

view on the link capacity and the SFI type. At the same

time, a secondary SFP is configured based on the ILP

formulation to substitute the primary SFP for link or

backup SFI failures. Only when all of these

configurations are set, the flow is serviced accordingly.

Therefore, if the backup SFIs and secondary SFP are

preconfigured, the flow can be serviced with the

minimal service interruption time in case of a link

failure or a SFI failure.

Figure 3. Flow chart

During the service time, if a SFI fails, the failure is

detected by means of BFD. In this case, the local repair

stage is initiated independent of the SDN controller.

First of all, the failed SFI is replaced with the backup

SFI without replacing whole SFP, and the previous SFI

of the failed SFI forwards the flow to the replaced

backup SFI. Therefore, the flow can be serviced

continuously. Even with the local repair stage, a link

failure between SFIs cannot be handled. Also, if SFI

and backup SFI fail together at the same time, the local

repair is not feasible. Therefore, for such cases, the

end-to-end repair stage is required by substituting the

primary SFP with the preconfigured secondary SFP.

Specifically, when a failure is notified to the ingress

node, the ingress node reconfigures its forwarding rule

on the flow towards the secondary SFP and thus the

flow can be serviced with minimal interruption.

Additionally, once the controller is informed of the

failure of SFI or link, it can reconfigure new backup

SFI and secondary SFP without traffic interruption.

5 Simulation Results

For performance evaluation, we compare the two-

stage failover mechanism with the conventional

mechanism [14], where the restoration for the link or

SF failure is conducted by the controller. Specifically,

when a link or SF failure is detected, the failure

notification message is sent to the controller. Then, the

controller establishes a new SFP and sends the flow

table update message to switches. Finally, flow tables

of switches are updated to deploy the new SFP and the

flow can be serviced again. Simulations are conducted

on the well-known network topology (i.e., Abilene

network of Internet2) [15]. The nodes in Abilene

network are mapped to SFFs, ingress/egress nodes, and

six SNs are connected to some SFFs. The total link

capacity is uniformly set as 10 Gbps for all links. In

234 Journal of Internet Technology Volume 19 (2018) No.1

this simulation, the CPU capacity is only considered as

a resource type, and all SNs can accommodate at most

two SFIs. The given SFC is FW-NAT-DPI and the

flow demand of SFC is set to 3 Gbps. On the other

hand, the default time to compute a new SFP in the

conventional mechanism is assumed as 50 ms, and the

propagation time varies from 10 ms to 30 ms. The

required link bandwidths (in Gbps) for synchronization

of NAT and DPI are 10% and 5% of the total link

capacity respectively, and δ is set to 30. The detection

of SFI and link failures in both mechanisms is done by

the BFD protocol.

5.1 Effect of Propagation Time

Figure 4 shows the recovery time for SFI and link

failures as a function of the propagation time. Note that

since the procedures of the conventional failover

mechanism to deal with SFI and link failures are same,

the recovery time for two cases is equal. It can be seen

that the recovery times of the proposed and

conventional mechanisms increase as the propagation

time increases. This is because the time to transmit

messages for restoring SFI and link failures increases

with the increase of the propagation time.

Figure 4. Effect of propagation time

On the other hand, it can be also seen that the

recovery time of the proposed mechanism is lower than

that of the conventional mechanism. This can be

explained as follows. In the conventional mechanism,

when a SFI failure occurs,

it is reported to the controller and the controller

establishes a new SFP and sends flow table update

messages to switches. As a result, longer recovery time

is expected and it is highly affected by the propagation

time. Meanwhile, in the proposed mechanism, the

failed SFI is replaced with the backup SFI right after a

SFI failure is detected. That is, the recovery time for

the SFI failure in the proposed mechanism only

includes the SFI failure detection time by BFD. In

addition, in case of a link failure, the ingress node

redirects the flow to the secondary SFP without any

intervention of the controller. Therefore, the proposed

mechanism shows the reduced recovery time for both

link and SFI failures.

5.2 Effect of D

Figure 5 shows the recovery time for SFI and link

failures when the distance between the controller and

ingress node, D , is changed. Note that the controller

can be reached only through the ingress node in our

system model. As shown in Figure 5, the recovery time

of the conventional mechanism increases linearly to the

increase of D because SFI or link failures should be

reported to the controller and the controller has to send

flow table update messages to switches. On the

contrary, in the proposed mechanism, the recovery

time is not affected by D since the pre-configured

backup SFI or secondary SFP is exploited without

reporting to the controller. In short, the gain of the

proposed mechanism in terms of the recovery time

becomes apparent as D increases.

Figure 5. Effect of D

6 Conclusion

In this paper, we proposed a two-stage failover

mechanism to provide HA in SDN-based in SFC. By

means of pre-established secondary SFP and backup

SFIs, the proposed two-stage failover mechanism

guarantees shorter failover time, which is verified by

extensive simulations. In our future work, we will

implement the two-stage failover mechanism in open

source (e.g., Open Daylight (ODL))-based testbeds and

carry out extensive performance study.

Acknowledgement

This work was supported by the ICT R&D program

of MSIP/IITP [B0101-16-0233: Smart Networking

Core Technology Development and B0190-15-2012:

Global SDN/NFV Open-Source Software Core Module/

Function Development].

A Two-Stage Failover Mechanism for High Availability in Service Function Chaining 235

References

[1] T. Nadeau, P. Quinn, Problem Statement for Service Function

Chaining, IETF RFC 7498, April, 2015.

[2] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu,

SIMPLE-fying Middlebox Policy Enforcement Using SDN,

ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, Hong Kong, China, 2013, pp. 27-38.

[3] S. K. Fayazbakhsh, V. Sekar, M. Yu, J. C. Mogul, FlowTags:

Enforcing Network Wide Policies in the Presence of Dynamic

Middlebox Actions, ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking, Hong Kong, China,

2013, pp. 19-24.

[4] L. F. Muller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, M.

P. Bar Cellos, Survivor: An Enhanced Controller Placement

Strategy for Improving SDN Survivability, IEEE Global

Communications Conference 2014, Austin, TX, 2014, pp.

1909-1915.

[5] F. Botelho, A. Bessani, F. M. V. Ramos, P. Ferreira, On the

Design of Practical Fault-tolerant SDN Controllers, Third

European Workshop on Software Defined Networks, Budapest,

Hungary, 2014, pp. 73-78.

[6] D. Katz, D. Ward, Bidirectional Forwarding Detection, IETF

RFC 5880, June, 2010.

[7] M. Desai, Nandagopal, Coping with Link Failures in

Centralized Control Plane Architecture, IEEE Communication

Systems and Networks, Bangalore, India, 2010, pp. 79-88.

[8] J. Kempf, M. Menth, Scalable Fault Management for OpenFlow,

IEEE International Conference on Communications 2012,

Ottawa, Canada, 2012, pp. 302-336.

[9] D. Staessens, S. Shama, D. Colle, M. Pickavet, P. Demeester,

Software Defined Networking: Meeting Carrier Grade

Requirements, IEEE Workshop on Local & Metropolitan

Area Networks 2011, Chapel Hill, North Carolina, 2011, pp.

1-6.

[10] J. Halpern C. Pignataro, Service Function Chaining (SFC)

Architecture, draft-ietf-sfc-architecture-11, July, 2015.

[11] M. Chiosi et al., Network Functions Virtualization: An

Introduction, Benefits, Enablers, Challenges & Call for Action,

ETSI White Paper, October, 2012.

[12] A. P. Quinn, et al., Network Service Header (NSH), draft-

quinn-sfc-nsh-07, February, 2015.

[13] A. M. Medhat, G. Carella, C. Lück, M. Corici, T. Magedanz,

Near Optimal Service Function Path Instantiation in a Multi-

Datacenter Environment, International Conference on Network

and Service Management 2015, Barcelona, Spain, 2015, pp.

336-341.

[14] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester,

Openflow: Meeting Carrier-grade Recovery Requirements,

Computer Communications, Vol. 36, No. 6, pp. 656-665,

March, 2013.

[15] Internet2 Abilene Network Topology, http://www.cs.utexas.

edu/yzhang/research/ AbileneTM/.

Biographies

Hosung Baek received the B.S.

degree from Korea University, Seoul,

Korea, in 2015. He is currently an

M.S. and Ph.D. integrated course

student in School of Electrical

Engineering, Korea University, Seoul,

Korea. His research interests include

5G networks, programmable dataplane language, and

SDN/NFV.

Haneul Ko received the B.S. and

Ph.D. degrees from Korea University,

Seoul, Korea, in 2011 and 2016,

respectively, both in School of

Electrical Engineering. He is currently

Postdoctoral Researcher with the

mobile network and communications,

Korea University, Seoul, Korea. His research interests

include 5G networks, mobility management, mobile

cloud computing, SDN/NFV, and Future Internet.

Gwangwoo Park received the B.S.,

M.S., Ph.D. degrees from Korea

University, Seoul, Korea, in 2010,

2012, and 2016, respectively. He is

currently working at Samsung

Electronics. His research interests

include content networking, multimedia streaming,

information-centric networking, and Future Internet.

Sangheon Pack received the B.S. and

Ph.D. degrees from Seoul National

University, Seoul, Korea, in 2000 and

2005, respectively, both in computer

engineering. In 2007, he joined the

faculty of Korea University, Seoul,

Korea, where he is currently a Professor in the School

of Electrical Engineering. He was the recipient of

KICS Haedong Young Scholar Award 2013, IEEE

ComSoc APB Outstanding Young Researcher Award

in 2009, and LG Yonam Foundation Overseas

Research Professor Program in 2012. He was a

publication co-chair of IEEE INFOCOM 2014, and a

co-chair of IEEE VTC 2010-Fall transportation track.

He is an editor of Journal of Communications

Networks (JCN) and a senior member of the IEEE. His

research interests include Future Internet,

SDN/ICN/DTN, mobility management, mobile cloud

networking, multimedia networking, and vehicular

networks.

236 Journal of Internet Technology Volume 19 (2018) No.1

Jiyoung Kwak received the B.S. and

M.S. degrees in computer engineering

from Chonnam National University,

Korea, in 1999 and 2001, respectively.

Since 2001, she has been working as a

Senior Research Engineer in the

Electronics and Telecommunications Research

Institute (ETRI), Korea. Her research interests include

intelligent network, SDN, ad-hoc group

communication, multimedia middleware, IoT and

lightweight OS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

