
A Performance-oriented Resource Allocation Algorithm with Insertion and Duplication for IaaS Clouds 219

A Performance-oriented Resource Allocation Algorithm

with Insertion and Duplication for IaaS Clouds

Inseong Song, Jinhyuk Kim, Sangbang Choi*

Department of Electronic Engineering, Inha University, Korea

nicthevirus@gmail.com, graybaily@inha.edu, sangbang@inha.ac.kr

*Corresponding Author: Sangbang Choi; E-mail: sangbang@inha.ac.kr

DOI: 10.3966/160792642018011901021

Abstract

The innate characteristics of a cloud computing

environment make itself attractive for running applications

with large scale data, as a user can utilize a number of

high performance computing virtual machine instances

without maintenance cost. The performance of executing

an application in a cloud computing environment depends

on a resource allocation policy that schedules an input

task graph onto virtual machine instances. In this paper,

we propose a novel resource allocation policy that

considers characteristics of an input task graph and virtual

machine instances of a cloud computing environment.

And also, we propose a new task insertion method that

also considers an execution finish time of a child task of

the inserted task. Simulation experiments with task

graphs from standard task graph project show that the

proposed algorithm outperforms conventional algorithms

in terms of normalized total execution time.

Keywords: Cloud computing, DAG, Scheduling, Task

insertion, Task duplication

1 Introduction

The demands for rapid processing of applications

with large scale data increase rapidly in fields of

science and technology, such as weather forecast, fluid

dynamics, and space programs. Along with the

growing needs for processing large scale data, a cloud

computing environment, especially the Infrastructure

as a Service (IaaS) clouds, gets attention with its innate

characteristics; its ability to execute a numerous

number of VM (Virtual Machine) instances at the same

time, and to provide on-demand computing resource

provisioning without maintenance cost [1-6]. Over the

last few years, the IaaS clouds have grown and

matured rapidly. Leading cloud providers, such as

Amazon and Google, are diversifying their instance

types and services including instances for high

performance computing. Amazon EC2 provides 13

types of type C VM instances, and Google Compute

Engine provides 16 types of type n VM instances for

high performance computing [7-8]. For example,

Amazon EC2 c4.2xlarge VM instance offers 8 virtual

CPUs and 15GB memory, and Google Compute

Engine n1-standard-8 VM instance offers 8 virtual

CPUs and 30GB memory.

A large scale application that is to be executed on a

cloud computing environment can be modeled as a

Directed Acyclic Graph (DAG). And the total

execution time of an application depends on a method

that schedules tasks in an input DAG onto a target

cloud computing environment [9]. However, the task

scheduling problem is an NP-complete problem which

cannot be finished in a polynomial time. And as a

result, most of the previous researches concentrate on

obtaining sub-optimal performance-effective solutions

[10-13], or minimizing user cost within the user

specified time limit [4, 14-16] with scheduling

heuristics.

Common scheduling heuristics consist of two phases,

a task prioritizing phase and a resource allocation

phase. The task prioritizing phase calculates and

decides a priority of each task in an input DAG, and

the resource allocation phase allocates those tasks on

cloud computing resources according to a resource

allocation policy. The resource allocation policy is a

scheme that makes a task to be allocated on a case

optimal cloud computing resource. There are two

advanced resource allocation policies which try to

enhance the performance in terms of execution time;

an insertion policy that utilizes a task insertion method

and a duplication policy that utilizes a task duplication

method [9].

In this paper, we propose a novel resource allocation

policy called an Advanced Hybrid Allocation Policy

(AHAP), and a new task insertion method of which an

AHAP utilizes. The AHAP uses both an insertion

method and a duplication method according to the

characteristics of a target cloud computing environment

and an input DAG, while conventional policies use

either one of them, or none of them. The AHAP

compares the computation cost and the communication

cost of an input DAG to the heterogeneity of cloud

computing resources. And then, allocates a task on an

optimal resource with either a new insertion method

proposed in this paper or a duplication method, after

220 Journal of Internet Technology Volume 19 (2018) No.1

comparing the values with a proposed criteria. The new

insertion method proposed in this paper tries to reduce

an execution finish time of a child task of the inserted

task, not just reducing an execution finish time of an

inserted task like conventional one does.

We have designed and implemented a simulator to

evaluate the performance of the proposed resource

allocation policy. For an unbiased simulation, we have

used task graphs in STanDard task Graph Project

(STDGP) [17] and task graphs that model real world

applications, such as Fast Fourier Transform (FFT) and

Gaussian Elimination (GE). Simulations are carried out

by applying the AHAP to conventional task scheduling

algorithms which aim to achieve the best performance

in terms of execution time, such as Heterogeneous

Critical Parents with Fast Duplicator (HCPFD)

algorithm [10], Heterogeneous Critical Task (HCT)

[11], and Performance Effective Task Scheduling

(PETS) algorithm [12]. And the combined algorithms,

the HCPFD with the AHAP, the HCT with the AHAP,

and the PETS with the AHAP, are compared to its

original algorithms, the HCPFD, the HCT, and the

PETS, respectively. The main metric of the

performance comparison is normalized total execution

time, the total execution time divided by the shortest

execution time of an input DAG. Comparison results

show that the AHAP shows up to 7.74%, 5.48%, and

7.52% better performance than the HCPFD, the HCT,

and the PETS in terms of normalized total execution

time with respect to the number of tasks in a graph,

respectively.

The rest of this paper is organized as follows. In

section 2, we present the task scheduling problem. In

section 3, brief descriptions about conventional task

scheduling algorithms are presented. Section 4

describes the proposed AHAP algorithm and improved

insertion method, and the performance evaluation

results of the proposed algorithm are presented in

section 5. Section 6 summarizes and concludes this

paper.

2 Problem Definition

Input task graphs, which model applications with

large scale data that are to be executed on a cloud

computing environment, are generally modeled as a

DAG G=(V, E). V is a set of tasks which consist an

application, and E is a set of edges which represent

precedence constraints [9]. Figure 1 shows an example

of a DAG. A number on an edge stands for a weight,

which is an average communication cost between two

tasks.

A DAG to be executed has to have one entry task

and one exit task. In Figure 1, task 1 and task 10 are

entry task and exit task, respectively. If a DAG has

multiple entry tasks or exit tasks, a dummy task with

no computation cost and communication cost is added

to the DAG.

1

62 3 4 5

97 8

10

9

19 16 23

17

1527

18 12 11 14

13

23

11 13

Figure 1. An example of a DAG

A task set V={v1, v2, …, vn} includes all tasks in a

DAG, where an ith task in the set is expressed as vi. A

task set with the number of n tasks means that an

application consists of n tasks. An edge set E={e1,2,

e1,3, …, ei,j} includes all edges in a DAG, which

connect tasks in a DAG. An edge connects two tasks

with direction, and thus can express precedence

constraint. In other words, an edge ei,j connects two

tasks vi and vj, and this indicates that vj can start its

execution after vi finishes its execution. In this case, vi

is called as a parent task of vj, and vj is called as a child

task of vi.

A child task set succ(vi) includes all child tasks of a

task vi. Every task in a DAG has at least one child task,

except an exit task. A parent task set pred(vi) includes

all parent tasks of vi. Every task in a DAG has at least

one parent task, except an entry task. A critical parent

task, expressed as dpred(vi), is a task that passes data to

vi on the latest time.

A cloud computing environment provides

computation service set S={S1, S2, …, Sn} as form of

VMs. Each service type, or a VM type, offers different

computation power. Si,j is a provisioned ith instance of

a VM type Sj.

As a DAG is to be processed on a cloud computing

environment which offers different computation power

for each VM type, an estimated computation cost of a

task on each VM type is given as a table W. And a

computation cost of a task vi on an instance Sj,k is

notated as w(vi, Sj,k). Table 1 shows an example

computation cost of a DAG on Figure 1, on 3 VM

types. As shown in the Table 1, each VM type has

given a different estimated computation cost as a cloud

computing environment is heterogeneous.

An average communication cost ¯c (vi, vj) is the

time elapsed while transferring data from a task vi to a

task vj over a network. If vi and vj are executed on a

same instance, an average communication cost

becomes 0. Although there is still a need to transfer

data between tasks, the cost is negligible since it is a

local job. An average computation cost ¯w (vi) is an

A Performance-oriented Resource Allocation Algorithm with Insertion and Duplication for IaaS Clouds 221

Table 1. An example computation cost table

Task S1 S2 S3

1 14 16 9

2 19 18 13

3 19 13 11

4 17 13 8

5 13 12 10

6 16 13 9

7 15 11 7

8 14 11 5

9 20 18 6

10 21 16 7

average computation cost of a task vi on every

provisioned instances, and is calculated with equation

(1).

,

(,)
()

i j k

i
all provisioned instances

w v S
w v

n
= ∑ (1)

where n is the number of all provisioned instances.

An Instance Available Time IAT(Si,j) is the time that

the instance Si,j completes the execution of a previous

task and is ready to execute another task. If a task vk is

the last allocated task on a Si,j, then the execution finish

time of the vk is IAT(Si,j).

An Earliest Start Time EST(vi, Sk,l) is the earliest

execution start time of a task vi on an instance Sk,l, and

is expressed with equation (2) [13]. An Earliest Finish

Time EFT(vi, Sk,l) is the earliest execution finish time

of a task vi on an instance Sk,l. It is the sum of EST(vi,

Sk,l) and a computation cost of vi on Sk,l, and is

calculated with equation (3).

()

()

{ () { () ()}}

j i

i k,l

i entry

v pred v

k,l j i j

EST v ,S =

0 v = v

max
otherwise

IAT S ,max EFT v +c v ,v

∈

⎧
⎪
⎨
⎪
⎩

 (2)

, ,

(,) () (,)
i k l i k,l i k l

EFT v S EST v ,S w v S= + (3)

We assume followings in this paper. A cloud

computing environment provides enough communication

bandwidth so that the multiple communications can

take place at the same time without delays. Also, an

instance can compute a task, and send or receive data

simultaneously. Execution of a task cannot be

preempted or checkpointed. And, the overheads related

to the task scheduling are ignored.

3 Related Work

As stated above, scheduling a DAG on a cloud

computing environment is an NP-complete problem.

Therefore, solving the problem for the best solution in

polynomial time is nearly impossible. Instead of

finding the best solution, researches on finding sub-

optimal solutions have been briskly carried out. In this

chapter, we briefly describe well-known simple and

effective task scheduling algorithms that are used in a

heterogeneous high performance computing

environment and a cloud computing environment. The

algorithms aim to achieve superior performance in

terms of execution time or minimize user cost required

for leasing a computing resource.

3.1 Algorithms for Reducing Execution Time

PETS. The PETS algorithm [12] aims to achieve the

best performance with low complexity. The algorithm

utilizes a graph leveling method and an insertion

method. The algorithm consists of three phases,

leveling phase, task prioritizing phase, and resource

allocation phase. In leveling phase, tasks in each level,

i.e. tasks that are independent to each other, are

grouped together. In task prioritizing phase, a priority

value of each task is calculated according to a specific

priority function, called a rank(vi). A rank(vi) is a sum

of computation costs and communication costs of tasks

and edges on a critical path, from an entry task to a

task vi. After calculating rank(vi) values, an ordered

priority list is generated by sorting the tasks in

increasing order of rank value. If there are multiple

tasks with the same rank(vi) value, a task with smaller

computation cost gets priority. In resource allocation

phase, the algorithm calculates execution finish time of

a task on each computation resource considering

possible insertions, and allocate the task on the

resource which provides the earliest finish time of the

task according to the order decided in task prioritizing

phase. The PETS algorithm provides good schedule

with low complexity, but has relatively low

performance than algorithms with a duplication

method.

HCPFD. The HCPFD algorithm [10] is a well-known

duplication based scheduling algorithm. The algorithm

aims to achieve the best performance with all possible

computing resources. The algorithm consists of two

phases, task prioritizing phase, and resource allocation

phase. In task prioritizing phase, the algorithm

traverses an input DAG upward, and computes an

average latest execution start time and an average

earliest execution start time of each task in the DAG.

Then, set the tasks with 0 differences between two

values as critical tasks, which construct a critical path.

And for each critical task from an exit task, the

algorithm puts parent tasks of the critical task to the

priority list followed by the critical task. In resource

allocation phase, the algorithm checks if duplicating a

critical parent of a task at the idle time between already

scheduled tasks on a computing resource is possible,

and if duplicating the critical parent of the task reduces

execution finish time of the task. If these two

conditions are met, the algorithm duplicates the critical

parent of the task, and allocates the task on the same

222 Journal of Internet Technology Volume 19 (2018) No.1

resource where the parent is allocated on. If the

conditions do not met, the algorithm allocates the task

on the resource which provides the fastest execution

finish time. The HCPFD algorithm provides superior

schedule, but has high complexity when compared to

algorithms with the other allocation policies and can

have redundant duplications.

HCT. The HCT algorithm [11] is a duplication based

scheduling algorithm which aims to achieve the best

performance. The algorithm consists of two phases,

scheduling list construction phase, and task assignment

phase. In scheduling list construction phase, a priority

value of each task is calculated according to a priority

function, called an upward rank. An upward rank of a

task is a sum of computation costs and communication

costs of tasks and edges on a critical path, from an exit

task to the task. Then, the scheduling list is constructed

by sorting the tasks in decreasing order of their upward

rank. In task assignment phase, the algorithm checks if

duplicating a critical parent of a task reduces execution

start time of the task on each computing resource. If

the condition is met, the algorithm duplicates the

critical parent of the task, and allocates the task on the

same resource where the parent is allocated on. If the

condition do not met, the algorithm allocates the task

on the resource which provides the fastest execution

finish time. But despite utilizing a duplication method,

the HCT algorithm does not provide good schedules

when compared to other algorithms for reducing

execution time.

3.2 Algorithms for Minimizing User Cost

IC-PCP. The IaaS Cloud – Partial Critical Path (IC-

PCP) algorithm [14] is an up-to-date scheduling

algorithm which takes account of a user cost. Unlike

previous algorithms, the IC-PCP algorithm tries to

minimize cost required for leasing a computing

resource of a cloud computing environment while

satisfying the user specified time limit. The algorithm

consists of two phases, partial critical path generation

phase, and resource allocation phase. In partial critical

path generation phase, the algorithm builds a critical

path from an exit task with the tasks that are not

assigned yet, a partial critical path. And with the partial

critical path, the algorithm runs to the resource

allocation phase. In resource allocation phase, the

algorithm allocates the partial critical path to the

cheapest computation resource while not violating the

time limit. If there is no place to allocate it on currently

leased resources, the algorithm newly leases a resource

and allocates it. And then, the algorithm goes

backwards to critical path generation phase, and

creates a new partial critical path. However, the IC-

PCP algorithm only concentrates on minimizing cost

and as a result, the algorithm is not capable of providing

good performance.

POSH. The Pareto Optimal Scheduling Heuristic

(POSH) algorithm [15] is a multi-objective scheduling

algorithm. The algorithm aims to solve the

optimization problem between reducing execution time

and minimizing cost. The algorithm uses Pareto

efficiency to solve the problem, and find the Pareto

optimal solution between execution time and cost. The

algorithm consists of two phases, prioritizing phase,

and mapping phase. In prioritizing phase, a sorted list

is created in decreasing order of priority. A priority

value of a task is a sum of computation costs and

communication costs of tasks and edges on a critical

path, from an exit task to the task. In mapping phase,

the algorithm assigns tasks in a sorted list to resources

based on Pareto dominance, which is calculated from

an objective function that the authors have proposed.

The POSH algorithm can offer an affordable execution

time with an affordable cost. However, the algorithm

cannot provide superior performance in terms of both

execution time and cost.

4 Proposed Algorithm

In this paper, we propose a novel resource allocation

policy for task scheduling algorithms, the AHAP

algorithm. Previous resource allocation policies

allocate a task onto resources without considering the

characteristics of a cloud computing environment and

an input DAG, and use either an insertion method or a

duplication method, or none of them. The AHAP,

however, uses both an insertion method and a

duplication method after deciding which resource

allocation method should be used according to an

average communication to computation ratio of an

input DAG and a heterogeneity of provisioned cloud

computing resources. In addition, the AHAP offers a

new insertion method that allocates tasks more

effectively considering a finish time of a child task.

4.1 Task Insertion and Task Duplication

Lots of data transfers may occur while executing an

application with large scale data, since tasks in a DAG

have lots of precedence constraints. And because a

child task cannot start its execution before receiving

data from a parent task, a finish time of an application

can be delayed. There are two ways to reduce the delay

occurred from transferring data; a task insertion

method and a task duplication method. Both provide

superior scheduling results when compared to ones not

using them.

Figure 2 and Figure 3 shows brief examples of a task

insertion and a task duplication. In Figure 2 and Figure

3, a task 4, a non-shaded one, has to receive data from

a task 2 before its execution, and has no precedence

constraints with a task 3. In case of task insertion in

Figure 2, if there is enough space for the task 4 on

between already scheduled task 1 and task 3, if the

insertion reduces the execution finish time of the task 4,

and if the insertion does not violates the precedence

A Performance-oriented Resource Allocation Algorithm with Insertion and Duplication for IaaS Clouds 223

constraints, the insertion of the task 4 is carried out in

between task 1 and task 3. As a result, the task 4 is

moved from the location before to the location after

[13]. In case of task duplication in Figure 3, if a

duplication of the task 2 reduces the execution finish

time of the task 4, the duplication of the task 2 is

carried out and the task 4 is moved from the location

before to the location after [10].

1

3

2

Before

After After

insertion

Before

insertion

1,1S 1,2S 1,3S

Figure 2. An example of a task insertion

1

3

2

Before

After

Dupl.

2

After

duplication

Before

duplication

1,1S 1,2S 1,3S

5

Figure 3. An example of a task duplication

4.2 Proposed AHAP Algorithm

As stated above, lots of data transfers occur while

executing an application with large scale data, and they

delay the execution of the application. And there are

two well-known methods which reduce the delay

occurred from transferring data; an insertion method

and a duplication method. To reduce the delays, the

AHAP algorithm utilizes both an insertion method and

a duplication method, according to the characteristics

of an input DAG and a target cloud computing system.

The AHAP algorithm assumes that all computing

resources are already provisioned as a form of VM

instances. In a high level view, the algorithm consists

of three steps; communication to computation cost

ratio calculation step, heterogeneity factor calculation

step, and allocation step.

In a first step, the AHAP algorithm calculates a

communication to computation ratio ccr of an input

DAG [9]. To calculate the ratio, an average

communication cost of all edges in an input DAG is

calculated, followed by calculating an average

computation cost of all tasks in an input DAG. Then,

the average communication cost is divided into the

average computation cost. The result is a

communication to computation ratio ccr.

In a second step, for each task in an ordered task list,

the AHAP algorithm calculates a heterogeneity factor

β(vi). A heterogeneity factor stands for the difference

of computation cost among the instances. The

algorithm calculates a heterogeneity factor β(vi) of

instances for a task vi with the following equation (4).

,

() ()
() 1 (,) () 1

2 2

i i
i i j k i

v v
w v w v S w v

β β⎛ ⎞ ⎛ ⎞
× − ≤ ≤ × +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4)

The smallest β(vi) value which satisfies the equation

(4) for all provisioned instances Sj,k is a heterogeneity

factor of instances for vi.

In a third step, the AHAP algorithm decides which

allocation method has to be used. Before deciding an

allocation method, a criteria for deciding an allocation

method has to be determined. According to equation

(4), the possible maximum computation cost of a task

vi can be expressed as in the following equation (5).

max ,

()
(,) () 1

2

i
i j k i

v
w v S w v

β⎛ ⎞
= × +⎜ ⎟

⎝ ⎠
 (5)

And according to the definition of a ccr, an

estimated communication cost from a task vi to its child

task vj, cestimated(vi,vj), is expressed as equation (6).

 (,) ()estimated i j ic v v ccr w v= × (6)

Next, to determine a comparison criteria, we

compare the estimated communication cost with the

possible maximum computation cost with the equation

(7).

()

(,) () 1
2

i
estimated i j i

v

c v v w v

β⎛ ⎞
> × +⎜ ⎟

⎝ ⎠
 (7)

By combining the equation (6) and the equation (7),

we can obtain the equation (8).

()

() () 1
2

i

i i

v

ccr w v w v

β⎛ ⎞
× > × +⎜ ⎟

⎝ ⎠
 (8)

And finally, we are able to obtain the final equation

(9) by eliminating ¯w (vi) on both sides.

()

1
2

i
v

ccr

β
> + (9)

The AHAP algorithm utilizes the equation (9) as a

criteria to decide which allocation method has to be

used. For each task vi in an ordered task list, except an

entry task, find dpred(vi) and apply the equation (9) to

the dpred(vi).

If the equation (9) is satisfied, the AHAP algorithm

224 Journal of Internet Technology Volume 19 (2018) No.1

judges that there might be enough idle time slots on

instances to duplicate the critical parent task since the

estimated average communication cost is bigger than

the possible maximum computation cost of the critical

parent task, and tries to duplicate the critical parent

task. On the other hand, if (9) is not satisfied, the

algorithm judges that there is not enough idle time slots

to duplicate the critical parent task, and only tries to

insert the current task with a proposed improved

insertion method. Following Algorithm 1 shows a

pseudo code of the AHAP algorithm.

Algorithm 1. The AHAP algorithm

▷First step

 Take an ordered task list L

 for each task in a DAG do

 Compute an average computation cost ¯w (vi)

 endfor

 Calculate an average communication cost of a DAG

 Calculate an average computation cost of a DAG

 Calculate a communication to computation ratio ccr

▷Second step

 for each task in L do

 Calculate a heterogeneity factor β

 endfor

▷Third step

 Allocate an entry task ventry on an instance Sj,k that

 provides EFT(ventry, Sj,k)

 Remove ventry from L

 for the first task vi in L do

 Find dpred(vi)

 if ccr > 1 + β(dpred(vi)) / 2

 Allocate vi with a duplication_method(vi, L)

 else

 Allocate vi with an improved_insertion_

 method(vi, L)

 endif

 endfor

If the AHAP algorithm decides to use a duplication

method, it first calculates EFTs of the current task on

each provisioned instances and selects an instance Sj,k

that provides the minimum EFT(vi, Sj,k). Then checks if

there is enough time slots to duplicate the critical

parent task dpred(vi) on the Sj,k, where the task vi is

scheduled. And also, assume that the dpred(vi) is

duplicated on the Sj,k and checks if the duplication of

the dpred(vi) reduces the EFT(vi, Sj,k). If the conditions

are met, the dpred(vi) is duplicated on the Sj,k followed

by allocating the vi on the Sj,k. If not, the vi is allocated

on the Sj,k that provides the minimum EFT(vi, Sj,k).

Finally, the vi is removed from L. Algorithm 2 shows a

pseudo code of the duplication method.

Algorithm 2. A duplication_method(vi, L) procedure

 Select an instance Sj,k that minimizes EFT(vi, Sj,k)

 if enough time slots on Sj,k to duplicate dpred(vi)

 and duplication of dpred(vi) reduces EFT(vi, Sj,k) do

 Duplicate dpred(vi) on Sj,k

 Allocate vi on Sj,k

 else

 Allocate vi on Sj,k

 endif

 Remove vi from L

If the AHAP algorithm decides to use an insertion

method, especially an improved insertion method, it

checks if following conditions are met.

Condition 1. For a task in an ordered task list, a next

task in the list is a child task of the current task.

Condition 2. Under condition 1, the current task is a

critical parent task of the next task, the child task.

Condition 3. Under condition 1, the current task and

the next task are to be allocated on different instances.

Condition 4. Under condition 1 to 3, moving the

current task to the instance where the next task is

allocated reduces the execution finish time of the next

task.

If all conditions are met, the AHAP algorithm

allocates the current task where the next task is to be

allocated to reduce the execution finish time of the

child task, which can lead to a better schedule. If not,

the AHAP algorithm uses a conventional insertion

method to allocate the current task.

In improved insertion method, the AHAP algorithm

first checks if a next task vl in the ordered task list L is

a child task of the current task vi. If not, the vi is

allocated on an instance Sj,k which provides the

minimum EFT(vi, Sj,k) with an insertion method, and

the vi is removed from L. If the vl is a child task of the

vi, find an instance Sj,k that minimizes EFT(vi, Sj,k) with

an insertion method and assume allocating the vi on the

Sj,k. With an assumption, find an instance Sm,n that

minimizes EFT(vl, Sm,n) with an insertion method, and

mark the execution finish time as an EFT1. Then, the

AHAP algorithm checks if the vi is a critical parent

task of the vl and if the Sj,k does not equals to the Sm,n. If

any of both does not meet, the vi is allocated on the Sj,k

and the vl is allocated on the Sm,n which are already

found above. If both do meet, the AHAP algorithm

assumes allocating the vi on the Sm,n where the vl is

allocated, and calculate EFT(vi, Sm,n) followed by

marking the execution finish time as an EFT2. If the

EFT1 is smaller than the EFT2, which means moving

the vi does not reduce the execution finish time of the vl,

the vi is allocated on the Sj,k and the vl is allocated on

the Sm,n. But if the EFT1 is larger than the EFT2, which

means moving the vi reduces the execution finish time

of the vl, both the vi and the vl are allocated on the Sm,n.

Lastly, both the vi and the vl are removed from L.

Algorithm 3 shows a pseudo code of the improved

A Performance-oriented Resource Allocation Algorithm with Insertion and Duplication for IaaS Clouds 225

insertion method.

Algorithm 3. The improved insertion method

A improved_insertion_method(vi, L) procedure

 if next task vl in the list L is succ(vi) do

 Select an instance Sj,k that minimizes EFT(vi, Sj,k)

with

 insertion

 Assume allocating vi on Sj,k

 Calculate EFT(vl, Sm,n) with insertion and mark as

EFT1

 if vi is dpred(vl) and Sj,k ≠ Sm,n do

 Assume allocating vi on Sm,n

 Calculate EFT(vl, Sm,n) and mark it as an EFT2

 if EFT1 < EFT2 do

 Allocate vi on Sj,k

 Allocate vl on Sm,n

 else

 Allocate vi on Sm,n

 Allocate vl on Sm,n

 endif

 else

 Allocate vi on Sj,k

 Allocate vl on Sm,n

 endif

 Remove vi and vl from L

 else

 Select Sj,k that minimizes EFT(vi, Sj,k) with

 insertion

 Allocate vi on Sj,k

 Remove vi from L

 endif

5 Performance Evaluation

We have implemented a simulator to verify the

performance of the proposed AHAP algorithm. The

performance of the AHAP algorithm has been verified

by applying the AHAP algorithm to existing

scheduling heuristics. The graphs used in experiments

are ones from STDGP (STanDard Task Graph Project)

[17], and ones that model real world applications, such

as FFT and GE. STDGP offers task graphs for fair

performance comparison of the algorithms under the

same conditions including task graphs generated from

actual application programs.

The input parameters for simulations were set to the

following values. There are 4 or 5 values in each

parameter and by combining them, we were able to

simulate various input task graphs and VM instances of

cloud computing environment with 360,000 times of

simulations.

The number of tasks in an input graph. v. The

number of tasks in an input task graph. There are 180

graphs for each number of tasks which have various

graph topologies. v ∈ {100, 300, 500, 750}

Communication to computation cost ratio. ccr. The

ratio of the average communication cost of edges to the

average computation cost of tasks in an input DAG.

Low ccr indicates that an input DAG is computation

intensive, and large ccr indicates that an input DAG is

communication intensive. ccr ∈ {0.1, 0.5, 1.0, 2.5, 5.0}

Computation resource heterogeneity factor. β. The

heterogeneity factor for speed of computational

resources. Low heterogeneity indicates that a

computation cost of a task is almost equal on each

computational resource, and large heterogeneity

indicates that a computation cost of a task is

significantly different on each computational resource.

β ∈ {0.1, 0.5, 1.0, 1.5, 2.0}

The number of provisioned VM instances. vm. The

number of provisioned instances for execution of an

application. vm ∈ {2, 4, 8, 16, 32}

Main comparison metric is an SLR (Schedule

Length Ratio). The SLR is a normalized value of the

total execution time of an input DAG, which is the

total execution time divided by the sum of the

minimum execution time of tasks on a critical path.

The SLR can be expressed as an equation (10).

,

,

SLR
min { (,)}

j k

i

S S i j k
v CP

total execution time

w v S
∈

∈

=
∑

 (10)

where CP refers to the critical path. The SLR of a

graph cannot be less than one since the denominator is

the lower bound. The algorithm which gives the lowest

SLR is the best algorithm in terms of the performance.

The performance of the AHAP algorithm has been

verified by applying the AHAP algorithm to the

previous scheduling heuristics which aim to achieve

the best performance in terms of execution time

without regarding cost, such as the HCPFD, the HCT,

and the PETS. The IC-PCP and the POSH are not

included in the simulations because they aim to

minimize user cost and as a result, there are significant

performance gap between them. Since above

scheduling heuristics are designed for a heterogeneous

multiprocessor computing system, we have slightly

modified and applied the algorithms to a cloud

computing environment.

Figure 4 shows an average SLR with respect to the

number of tasks in an input graph. For each v, we ran

22,500 times of simulations by combining ccr, β, and

vm. The ones with the proposed AHAP algorithm

outperforms the conventional algorithms in terms of an

average SLR. An average SLR of the HCPFD

algorithm with the AHAP algorithm is better than the

conventional HCPFD algorithm by 6.31%, the HCT

with the AHAP than the conventional HCT by 4.10%,

and the PETS with the AHAP than the conventional

PETS by 6.84%. As shown in Figure 4, the AHAP

226 Journal of Internet Technology Volume 19 (2018) No.1

algorithm provides better performance along with the

increase of the number of tasks.

100 300 500 750

5

10

15

20

25

30

35

A
n

 A
v
e

ra
g

e
 S

L
R

The number of nodes in a graph

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 4. An average SLR with respect to v

Figure 5 shows an average SLR with respect to

communication to computation cost ratio. For each ccr,

we ran 18,000 times of simulations by combining v, β,

and vm. The ones with the proposed AHAP algorithm

outperforms the conventional algorithms in terms of an

average SLR, on all ccr values. An average SLR of the

HCPFD algorithm with the AHAP algorithm is better

than the conventional HCPFD algorithm by 3.80%, the

HCT with the AHAP than the conventional HCT by

2.79%, and the PETS with the AHAP than the

conventional PETS by 5.51%. As shown in Figure 5,

the AHAP algorithm shows better performance not

only in computation intensive graphs but also in

communication intensive graphs thanks to the selective

resource allocation method and improved insertion

method.

0.1 0.5 1 2.5 5

5

10

15

20

25

30

35

40

A
n
 A

v
e
ra

g
e
 S

L
R

Communication to computation cost ratio

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 5. An average SLR with respect to ccr

Figure 6 shows an average SLR with respect to

heterogeneity factor. For each β, we ran 18,000 times

of simulations by combining v, ccr and vm. The ones

with the proposed AHAP algorithm outperforms the

conventional algorithms in terms of an average SLR

regardless of heterogeneity factor. An average SLR of

the HCPFD algorithm with the AHAP algorithm is

better than the conventional HCPFD algorithm by

3.03%, the HCT with the AHAP than the conventional

HCT by 2.83%, and the PETS with the AHAP than the

conventional PETS by 6.12%. As shown in Figure 6,

the AHAP algorithm shows better performance from

low heterogeneity factor through high heterogeneity

factor thanks to the selective resource allocation

method and improved insertion method.

0.1 0.5 1 1.5 2

10

15

20

25

30

35

40

A
n
 A

v
e
ra

g
e
 S

L
R

Heterogeneity factor

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 6. An average SLR with respect to β

Figure 7 shows an average SLR with respect to the

number of provisioned VM instances. For each vm, we

ran 18,000 times of simulations by combining v, ccr,

and β. The ones with the proposed AHAP algorithm

outperforms the conventional algorithms in terms of an

average SLR. An average SLR of the HCPFD

algorithm with the AHAP algorithm is better than the

conventional HCPFD algorithm by 2.78%, the HCT

with the AHAP than the conventional HCT by 1.46%,

and the PETS with the AHAP than the conventional

PETS by 5.26%. As shown in Figure 7, the efficiency

of the algorithms decrease in environments with more

than 8 instances. However, the AHAP algorithm

provides better performance despite of decreased

efficiency. And according to the figure, leasing 8

instances from the cloud provider when running

applications with large scale data on the IaaS clouds

might be the best choice considering both the

performance and the cost.

2 4 8 16 32

10

15

20

25

30

35

A
n

 A
v
e

ra
g

e
 S

L
R

The number of provisioned VMs

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 7. An average SLR with respect to vm

A Performance-oriented Resource Allocation Algorithm with Insertion and Duplication for IaaS Clouds 227

Figure 8 and Figure 9 shows an average SLR with

respect to the number of data points in FFT graphs and

with respect to matrix size in GE graphs, respectively.

For each number of data points in FFT graphs and for

each matrix size in GE graphs, we ran 125 simulations

by combining ccr, β, and vm. As shown in Figure 8, the

ones with the AHAP algorithm outperforms the

conventional algorithms in terms of an average SLR on

all data points and all matrix sizes. In Figure 8, the

PETS algorithm with the AHAP algorithm shows

5.79% better performance when compared to the

conventional one, and in Figure 9, the PETS algorithm

with the AHAP algorithm shows 5.88% better

performance than the conventional one. And especially,

the PETS algorithm with the AHAP algorithm shows

notable performance improvements in Figure 9. It can

be analyzed that the notable performance improvements

come from the duplications of tasks and proposed

improved insertion method, of which the conventional

algorithm does not utilize.

2 4 8 16 32

1

2

3

4

5

6

7

A
n

 A
v
e

ra
g

e
 S

L
R

The number of data points

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 8. An average SLR with respect to the number

of data points in FFT graaphs

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
n

 A
v
e

ra
g

e
 S

L
R

Matrix size

 (HCPFD)AHAP

 HCPFD

 (HCT)AHAP

 HCT

 (PETS)AHAP

 PETS

Figure 9. An average SLR with respect to matrix size

in GE graphs

6 Conclusion

In this paper, we presented a novel resource

allocation algorithm for cloud computing environment,

called the AHAP, and an improved insertion method.

Unlike conventional algorithms, the AHAP algorithm

utilizes both a duplication method and an improved

insertion method according to the characteristics of

environment. The AHAP algorithm allocates a task

onto a VM instance after evaluating the possibilities of

reducing the execution time of the two methods based

on the characteristics of an input DAG, a ccr, and a

target cloud computing environment, a β. And the

improved insertion method allocates a task onto a VM

instance with an insertion method while considering an

execution finish time of a child task. The simulations

with various parameters including multiple ccr and β

shows that the proposed AHAP algorithm provides

better performance than conventional algorithms.

Further researches will be on finding more efficient

criterion for choosing an allocation method with

dynamic scaling of the number of VM instances.

Acknowledgement

This work was supported by INHA UNIVERSITY

Research Grant.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M.

Zaharia, A View of Cloud Computing, Communications of

the ACM, Vol. 53, No. 4, pp. 50-58, April, 2010.

[2] Q. Zhang, L. Cheng, R. Boutaba, Cloud Computing: State-of-

the-art and research challenges, Journal of Internet Services

and Applications, Vol. 1, No. 1, pp. 7-18, May, 2010.

[3] G. Pallis, Cloud Computing: The New Frontier of Internet

Computing, IEEE Internet Computing, Vol. 14, No. 5, pp. 70-

73, September-October, 2010.

[4] R. Van den Bossche, K. Vanmechelen, J. Broeckhove, Online

Cost-efficient Scheduling of Deadline-constrained Workloads

on Hybrid Clouds, Future Generation Computer Systems, Vol.

29, No. 4, pp. 973-985, June, 2013.

[5] L.-Y. Tseng, S.-S. Wang, S.-C. Wang, K.-Q. Yan,

Essentiality of Deadline for Task Scheduling in Cloud

Computing, Journal of Internet Technology, Vol. 16 No. 1,

pp. 47-60, January, 2015.

[6] J. H. Park, J. C. Hung, N. Y. Yen, Y.-S. Jeong, Guest

Editorial: Advanced Convergence Technologies: Big Data,

IoT, Cloud Computing, Journal of Internet Technology, Vol.

15 No. 4, pp. 589-591, July, 2014.

[7] S. Akioka, Y. Muraoka, HPC Benchmarks on Amazon EC2,

IEEE 24th International Conference on Advanced Information

Networking and Applications Workshops, Perth, Australia,

2010, pp. 1029-1034.

228 Journal of Internet Technology Volume 19 (2018) No.1

[8] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.

Berman, P. Maechling, Scientific Workflow Applications on

Amazon EC2, IEEE 5th International Conference on E-

Science Workshops, Oxford, UK, 2009, pp. 59-66.

[9] O. Sinnen, Task Scheduling for Parallel Systems, Wiley, 2007.

[10] T. Hagras, J. Janecek, A High Performance, Low Complexity

Algorithm for Compile-time Task Scheduling in Heterogeneous

Systems, Parallel Computing, Vol. 31, No. 7, pp. 653-670,

July, 2005.

[11] L. Zhou, S. Shixin, Scheduling Algorithm Based on Critical

Tasks in Heterogeneous Environments, Journal of Systems

Engineering and Electronics, Vol. 19, No. 2, pp. 398-405,

April, 2008.

[12] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, Performance

Effective Task Scheduling Algorithm for Heterogeneous

Computing System, 4th International Symposium on Parallel

and Distributed Computing, Lille, France, 2005, pp. 28-38.

[13] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and

Low-complexity Task Scheduling for Heterogeneous

Computing, IEEE Transactions on Parallel and Distributed

Systems, Vol. 13, No. 3, pp. 260-274, March, 2002.

[14] S. Abrishami, M. Naghibzadeh, D. H. J. Epema, Deadline-

constrained Workflow Scheduling Algorithms for Infrastructure

as a Service Clouds, Future Generation Computer Systems,

Vol. 29, No. 1, pp. 158-169, January, 2013.

[15] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, J. Wang, Cost-

efficient Task Scheduling for Executing Large Programs in

the Cloud, Parallel Computing, Vol. 39, No. 4-5, pp. 177-188,

April- May, 2013.

[16] R. N. Calheiros, R. Buyya, Meeting Deadlines of Scientific

Workflows in Public Clouds with Tasks Replication, IEEE

Transactions on Parallel and Distributed Systems, Vol. 25,

No. 7, pp. 1787-1796, July, 2014.

[17] http://www.kasahara.elec.waseda.ac.jp.

Biographies

Inseong Song received M.S. degree

in electronic engineering at the Inha

University, Korea, in 2011. He is

currently in Ph.D. course at the Inha

University. His research interests are

parallel and distributed computing,

computer architecture, and computer

networks.

Jinhyuk Kim received M.S. degree in

electronic engineering at the Inha

University, Korea, in 2011. He is

currently in Ph.D. course at the Inha

University. His research interests are

computer networks, computer architecture,

and parallel and distributed computing.

Sangbang Choi received Ph.D. in

computer science at the University of

Washington, U.S., in 1988. He is a

professor in department of electronic

engineering at the Inha University.

His research interests are computer

architecture, computer networks, and

parallel and distributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

