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Abstract 

The innate characteristics of a cloud computing 

environment make itself attractive for running applications 

with large scale data, as a user can utilize a number of 

high performance computing virtual machine instances 

without maintenance cost. The performance of executing 

an application in a cloud computing environment depends 

on a resource allocation policy that schedules an input 

task graph onto virtual machine instances. In this paper, 

we propose a novel resource allocation policy that 

considers characteristics of an input task graph and virtual 

machine instances of a cloud computing environment. 

And also, we propose a new task insertion method that 

also considers an execution finish time of a child task of 

the inserted task. Simulation experiments with task 

graphs from standard task graph project show that the 

proposed algorithm outperforms conventional algorithms 

in terms of normalized total execution time. 

Keywords:  Cloud computing, DAG, Scheduling, Task 

insertion, Task duplication 

1 Introduction 

The demands for rapid processing of applications 

with large scale data increase rapidly in fields of 

science and technology, such as weather forecast, fluid 

dynamics, and space programs. Along with the 

growing needs for processing large scale data, a cloud 

computing environment, especially the Infrastructure 

as a Service (IaaS) clouds, gets attention with its innate 

characteristics; its ability to execute a numerous 

number of VM (Virtual Machine) instances at the same 

time, and to provide on-demand computing resource 

provisioning without maintenance cost [1-6]. Over the 

last few years, the IaaS clouds have grown and 

matured rapidly. Leading cloud providers, such as 

Amazon and Google, are diversifying their instance 

types and services including instances for high 

performance computing. Amazon EC2 provides 13 

types of type C VM instances, and Google Compute 

Engine provides 16 types of type n VM instances for 

high performance computing [7-8]. For example, 

Amazon EC2 c4.2xlarge VM instance offers 8 virtual 

CPUs and 15GB memory, and Google Compute 

Engine n1-standard-8 VM instance offers 8 virtual 

CPUs and 30GB memory. 

A large scale application that is to be executed on a 

cloud computing environment can be modeled as a 

Directed Acyclic Graph (DAG). And the total 

execution time of an application depends on a method 

that schedules tasks in an input DAG onto a target 

cloud computing environment [9]. However, the task 

scheduling problem is an NP-complete problem which 

cannot be finished in a polynomial time. And as a 

result, most of the previous researches concentrate on 

obtaining sub-optimal performance-effective solutions 

[10-13], or minimizing user cost within the user 

specified time limit [4, 14-16] with scheduling 

heuristics. 

Common scheduling heuristics consist of two phases, 

a task prioritizing phase and a resource allocation 

phase. The task prioritizing phase calculates and 

decides a priority of each task in an input DAG, and 

the resource allocation phase allocates those tasks on 

cloud computing resources according to a resource 

allocation policy. The resource allocation policy is a 

scheme that makes a task to be allocated on a case 

optimal cloud computing resource. There are two 

advanced resource allocation policies which try to 

enhance the performance in terms of execution time; 

an insertion policy that utilizes a task insertion method 

and a duplication policy that utilizes a task duplication 

method [9]. 

In this paper, we propose a novel resource allocation 

policy called an Advanced Hybrid Allocation Policy 

(AHAP), and a new task insertion method of which an 

AHAP utilizes. The AHAP uses both an insertion 

method and a duplication method according to the 

characteristics of a target cloud computing environment 

and an input DAG, while conventional policies use 

either one of them, or none of them. The AHAP 

compares the computation cost and the communication 

cost of an input DAG to the heterogeneity of cloud 

computing resources. And then, allocates a task on an 

optimal resource with either a new insertion method 

proposed in this paper or a duplication method, after 
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comparing the values with a proposed criteria. The new 

insertion method proposed in this paper tries to reduce 

an execution finish time of a child task of the inserted 

task, not just reducing an execution finish time of an 

inserted task like conventional one does. 

We have designed and implemented a simulator to 

evaluate the performance of the proposed resource 

allocation policy. For an unbiased simulation, we have 

used task graphs in STanDard task Graph Project 

(STDGP) [17] and task graphs that model real world 

applications, such as Fast Fourier Transform (FFT) and 

Gaussian Elimination (GE). Simulations are carried out 

by applying the AHAP to conventional task scheduling 

algorithms which aim to achieve the best performance 

in terms of execution time, such as Heterogeneous 

Critical Parents with Fast Duplicator (HCPFD) 

algorithm [10], Heterogeneous Critical Task (HCT) 

[11], and Performance Effective Task Scheduling 

(PETS) algorithm [12]. And the combined algorithms, 

the HCPFD with the AHAP, the HCT with the AHAP, 

and the PETS with the AHAP, are compared to its 

original algorithms, the HCPFD, the HCT, and the 

PETS, respectively. The main metric of the 

performance comparison is normalized total execution 

time, the total execution time divided by the shortest 

execution time of an input DAG. Comparison results 

show that the AHAP shows up to 7.74%, 5.48%, and 

7.52% better performance than the HCPFD, the HCT, 

and the PETS in terms of normalized total execution 

time with respect to the number of tasks in a graph, 

respectively. 

The rest of this paper is organized as follows. In 

section 2, we present the task scheduling problem. In 

section 3, brief descriptions about conventional task 

scheduling algorithms are presented. Section 4 

describes the proposed AHAP algorithm and improved 

insertion method, and the performance evaluation 

results of the proposed algorithm are presented in 

section 5. Section 6 summarizes and concludes this 

paper. 

2 Problem Definition 

Input task graphs, which model applications with 

large scale data that are to be executed on a cloud 

computing environment, are generally modeled as a 

DAG G=(V, E). V is a set of tasks which consist an 

application, and E is a set of edges which represent 

precedence constraints [9]. Figure 1 shows an example 

of a DAG. A number on an edge stands for a weight, 

which is an average communication cost between two 

tasks. 

A DAG to be executed has to have one entry task 

and one exit task. In Figure 1, task 1 and task 10 are 

entry task and exit task, respectively. If a DAG has 

multiple entry tasks or exit tasks, a dummy task with 

no computation cost and communication cost is added 

to the DAG. 
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Figure 1. An example of a DAG 

A task set V={v1, v2, …, vn} includes all tasks in a 

DAG, where an ith task in the set is expressed as vi. A 

task set with the number of n tasks means that an 

application consists of n tasks. An edge set E={e1,2, 

e1,3, …, ei,j} includes all edges in a DAG, which 

connect tasks in a DAG. An edge connects two tasks 

with direction, and thus can express precedence 

constraint. In other words, an edge ei,j connects two 

tasks vi and vj, and this indicates that vj can start its 

execution after vi finishes its execution. In this case, vi 

is called as a parent task of vj, and vj is called as a child 

task of vi. 

A child task set succ(vi) includes all child tasks of a 

task vi. Every task in a DAG has at least one child task, 

except an exit task. A parent task set pred(vi) includes 

all parent tasks of vi. Every task in a DAG has at least 

one parent task, except an entry task. A critical parent 

task, expressed as dpred(vi), is a task that passes data to 

vi on the latest time. 

A cloud computing environment provides 

computation service set S={S1, S2, …, Sn} as form of 

VMs. Each service type, or a VM type, offers different 

computation power. Si,j is a provisioned ith instance of 

a VM type Sj. 

As a DAG is to be processed on a cloud computing 

environment which offers different computation power 

for each VM type, an estimated computation cost of a 

task on each VM type is given as a table W. And a 

computation cost of a task vi on an instance Sj,k is 

notated as w(vi, Sj,k). Table 1 shows an example 

computation cost of a DAG on Figure 1, on 3 VM 

types. As shown in the Table 1, each VM type has 

given a different estimated computation cost as a cloud 

computing environment is heterogeneous. 

An average communication cost ¯c (vi, vj) is the 

time elapsed while transferring data from a task vi to a 

task vj over a network. If vi and vj are executed on a 

same instance, an average communication cost 

becomes 0. Although there is still a need to transfer 

data between tasks, the cost is negligible since it is a 

local job. An average computation cost ¯w (vi) is an  
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Table 1. An example computation cost table 

Task S1 S2 S3 

1 14 16 9 

2 19 18 13 

3 19 13 11 

4 17 13 8 

5 13 12 10 

6 16 13 9 

7 15 11 7 

8 14 11 5 

9 20 18 6 

10 21 16 7 

 

average computation cost of a task vi on every 

provisioned instances, and is calculated with equation 

(1). 
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where n is the number of all provisioned instances. 

An Instance Available Time IAT(Si,j) is the time that 

the instance Si,j completes the execution of a previous 

task and is ready to execute another task. If a task vk is 

the last allocated task on a Si,j, then the execution finish 

time of the vk is IAT(Si,j). 

An Earliest Start Time EST(vi, Sk,l) is the earliest 

execution start time of a task vi on an instance Sk,l, and 

is expressed with equation (2) [13]. An Earliest Finish 

Time EFT(vi, Sk,l) is the earliest execution finish time 

of a task vi on an instance Sk,l. It is the sum of EST(vi, 

Sk,l) and a computation cost of vi on Sk,l, and is 

calculated with equation (3). 
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We assume followings in this paper. A cloud 

computing environment provides enough communication 

bandwidth so that the multiple communications can 

take place at the same time without delays. Also, an 

instance can compute a task, and send or receive data 

simultaneously. Execution of a task cannot be 

preempted or checkpointed. And, the overheads related 

to the task scheduling are ignored. 

3 Related Work 

As stated above, scheduling a DAG on a cloud 

computing environment is an NP-complete problem. 

Therefore, solving the problem for the best solution in 

polynomial time is nearly impossible. Instead of 

finding the best solution, researches on finding sub-

optimal solutions have been briskly carried out. In this 

chapter, we briefly describe well-known simple and 

effective task scheduling algorithms that are used in a 

heterogeneous high performance computing 

environment and a cloud computing environment. The 

algorithms aim to achieve superior performance in 

terms of execution time or minimize user cost required 

for leasing a computing resource. 

3.1 Algorithms for Reducing Execution Time 

PETS. The PETS algorithm [12] aims to achieve the 

best performance with low complexity. The algorithm 

utilizes a graph leveling method and an insertion 

method. The algorithm consists of three phases, 

leveling phase, task prioritizing phase, and resource 

allocation phase. In leveling phase, tasks in each level, 

i.e. tasks that are independent to each other, are 

grouped together. In task prioritizing phase, a priority 

value of each task is calculated according to a specific 

priority function, called a rank(vi). A rank(vi) is a sum 

of computation costs and communication costs of tasks 

and edges on a critical path, from an entry task to a 

task vi. After calculating rank(vi) values, an ordered 

priority list is generated by sorting the tasks in 

increasing order of rank value. If there are multiple 

tasks with the same rank(vi) value, a task with smaller 

computation cost gets priority. In resource allocation 

phase, the algorithm calculates execution finish time of 

a task on each computation resource considering 

possible insertions, and allocate the task on the 

resource which provides the earliest finish time of the 

task according to the order decided in task prioritizing 

phase. The PETS algorithm provides good schedule 

with low complexity, but has relatively low 

performance than algorithms with a duplication 

method. 

HCPFD. The HCPFD algorithm [10] is a well-known 

duplication based scheduling algorithm. The algorithm 

aims to achieve the best performance with all possible 

computing resources. The algorithm consists of two 

phases, task prioritizing phase, and resource allocation 

phase. In task prioritizing phase, the algorithm 

traverses an input DAG upward, and computes an 

average latest execution start time and an average 

earliest execution start time of each task in the DAG. 

Then, set the tasks with 0 differences between two 

values as critical tasks, which construct a critical path. 

And for each critical task from an exit task, the 

algorithm puts parent tasks of the critical task to the 

priority list followed by the critical task. In resource 

allocation phase, the algorithm checks if duplicating a 

critical parent of a task at the idle time between already 

scheduled tasks on a computing resource is possible, 

and if duplicating the critical parent of the task reduces 

execution finish time of the task. If these two 

conditions are met, the algorithm duplicates the critical 

parent of the task, and allocates the task on the same 
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resource where the parent is allocated on. If the 

conditions do not met, the algorithm allocates the task 

on the resource which provides the fastest execution 

finish time. The HCPFD algorithm provides superior 

schedule, but has high complexity when compared to 

algorithms with the other allocation policies and can 

have redundant duplications. 

HCT. The HCT algorithm [11] is a duplication based 

scheduling algorithm which aims to achieve the best 

performance. The algorithm consists of two phases, 

scheduling list construction phase, and task assignment 

phase. In scheduling list construction phase, a priority 

value of each task is calculated according to a priority 

function, called an upward rank. An upward rank of a 

task is a sum of computation costs and communication 

costs of tasks and edges on a critical path, from an exit 

task to the task. Then, the scheduling list is constructed 

by sorting the tasks in decreasing order of their upward 

rank. In task assignment phase, the algorithm checks if 

duplicating a critical parent of a task reduces execution 

start time of the task on each computing resource. If 

the condition is met, the algorithm duplicates the 

critical parent of the task, and allocates the task on the 

same resource where the parent is allocated on. If the 

condition do not met, the algorithm allocates the task 

on the resource which provides the fastest execution 

finish time. But despite utilizing a duplication method, 

the HCT algorithm does not provide good schedules 

when compared to other algorithms for reducing 

execution time. 

3.2 Algorithms for Minimizing User Cost 

IC-PCP. The IaaS Cloud – Partial Critical Path (IC-

PCP) algorithm [14] is an up-to-date scheduling 

algorithm which takes account of a user cost. Unlike 

previous algorithms, the IC-PCP algorithm tries to 

minimize cost required for leasing a computing 

resource of a cloud computing environment while 

satisfying the user specified time limit. The algorithm 

consists of two phases, partial critical path generation 

phase, and resource allocation phase. In partial critical 

path generation phase, the algorithm builds a critical 

path from an exit task with the tasks that are not 

assigned yet, a partial critical path. And with the partial 

critical path, the algorithm runs to the resource 

allocation phase. In resource allocation phase, the 

algorithm allocates the partial critical path to the 

cheapest computation resource while not violating the 

time limit. If there is no place to allocate it on currently 

leased resources, the algorithm newly leases a resource 

and allocates it. And then, the algorithm goes 

backwards to critical path generation phase, and 

creates a new partial critical path. However, the IC-

PCP algorithm only concentrates on minimizing cost 

and as a result, the algorithm is not capable of providing 

good performance. 

POSH. The Pareto Optimal Scheduling Heuristic 

(POSH) algorithm [15] is a multi-objective scheduling 

algorithm. The algorithm aims to solve the 

optimization problem between reducing execution time 

and minimizing cost. The algorithm uses Pareto 

efficiency to solve the problem, and find the Pareto 

optimal solution between execution time and cost. The 

algorithm consists of two phases, prioritizing phase, 

and mapping phase. In prioritizing phase, a sorted list 

is created in decreasing order of priority. A priority 

value of a task is a sum of computation costs and 

communication costs of tasks and edges on a critical 

path, from an exit task to the task. In mapping phase, 

the algorithm assigns tasks in a sorted list to resources 

based on Pareto dominance, which is calculated from 

an objective function that the authors have proposed. 

The POSH algorithm can offer an affordable execution 

time with an affordable cost. However, the algorithm 

cannot provide superior performance in terms of both 

execution time and cost. 

4 Proposed Algorithm 

In this paper, we propose a novel resource allocation 

policy for task scheduling algorithms, the AHAP 

algorithm. Previous resource allocation policies 

allocate a task onto resources without considering the 

characteristics of a cloud computing environment and 

an input DAG, and use either an insertion method or a 

duplication method, or none of them. The AHAP, 

however, uses both an insertion method and a 

duplication method after deciding which resource 

allocation method should be used according to an 

average communication to computation ratio of an 

input DAG and a heterogeneity of provisioned cloud 

computing resources. In addition, the AHAP offers a 

new insertion method that allocates tasks more 

effectively considering a finish time of a child task. 

4.1 Task Insertion and Task Duplication 

Lots of data transfers may occur while executing an 

application with large scale data, since tasks in a DAG 

have lots of precedence constraints. And because a 

child task cannot start its execution before receiving 

data from a parent task, a finish time of an application 

can be delayed. There are two ways to reduce the delay 

occurred from transferring data; a task insertion 

method and a task duplication method. Both provide 

superior scheduling results when compared to ones not 

using them. 

Figure 2 and Figure 3 shows brief examples of a task 

insertion and a task duplication. In Figure 2 and Figure 

3, a task 4, a non-shaded one, has to receive data from 

a task 2 before its execution, and has no precedence 

constraints with a task 3. In case of task insertion in 

Figure 2, if there is enough space for the task 4 on 

between already scheduled task 1 and task 3, if the 

insertion reduces the execution finish time of the task 4, 

and if the insertion does not violates the precedence 
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constraints, the insertion of the task 4 is carried out in 

between task 1 and task 3. As a result, the task 4 is 

moved from the location before to the location after 

[13]. In case of task duplication in Figure 3, if a 

duplication of the task 2 reduces the execution finish 

time of the task 4, the duplication of the task 2 is 

carried out and the task 4 is moved from the location 

before to the location after [10]. 
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Figure 2. An example of a task insertion 
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Figure 3. An example of a task duplication 

4.2 Proposed AHAP Algorithm 

As stated above, lots of data transfers occur while 

executing an application with large scale data, and they 

delay the execution of the application. And there are 

two well-known methods which reduce the delay 

occurred from transferring data; an insertion method 

and a duplication method. To reduce the delays, the 

AHAP algorithm utilizes both an insertion method and 

a duplication method, according to the characteristics 

of an input DAG and a target cloud computing system. 

The AHAP algorithm assumes that all computing 

resources are already provisioned as a form of VM 

instances. In a high level view, the algorithm consists 

of three steps; communication to computation cost 

ratio calculation step, heterogeneity factor calculation 

step, and allocation step. 

In a first step, the AHAP algorithm calculates a 

communication to computation ratio ccr of an input 

DAG [9]. To calculate the ratio, an average 

communication cost of all edges in an input DAG is 

calculated, followed by calculating an average 

computation cost of all tasks in an input DAG. Then, 

the average communication cost is divided into the 

average computation cost. The result is a 

communication to computation ratio ccr. 

In a second step, for each task in an ordered task list, 

the AHAP algorithm calculates a heterogeneity factor 

β(vi). A heterogeneity factor stands for the difference 

of computation cost among the instances. The 

algorithm calculates a heterogeneity factor β(vi) of 

instances for a task vi with the following equation (4). 

,
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i i
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The smallest β(vi) value which satisfies the equation 

(4) for all provisioned instances Sj,k is a heterogeneity 

factor of instances for vi. 

In a third step, the AHAP algorithm decides which 

allocation method has to be used. Before deciding an 

allocation method, a criteria for deciding an allocation 

method has to be determined. According to equation 

(4), the possible maximum computation cost of a task 

vi can be expressed as in the following equation (5). 
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And according to the definition of a ccr, an 

estimated communication cost from a task vi to its child 

task vj, cestimated(vi,vj), is expressed as equation (6). 

 ( , ) ( )estimated i j ic v v ccr w v= ×  (6) 

Next, to determine a comparison criteria, we 

compare the estimated communication cost with the 

possible maximum computation cost with the equation 

(7). 
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By combining the equation (6) and the equation (7), 

we can obtain the equation (8). 
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And finally, we are able to obtain the final equation 

(9) by eliminating ¯w (vi) on both sides. 
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v
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β
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The AHAP algorithm utilizes the equation (9) as a 

criteria to decide which allocation method has to be 

used. For each task vi in an ordered task list, except an 

entry task, find dpred(vi) and apply the equation (9) to 

the dpred(vi). 

If the equation (9) is satisfied, the AHAP algorithm 
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judges that there might be enough idle time slots on 

instances to duplicate the critical parent task since the 

estimated average communication cost is bigger than 

the possible maximum computation cost of the critical 

parent task, and tries to duplicate the critical parent 

task. On the other hand, if (9) is not satisfied, the 

algorithm judges that there is not enough idle time slots 

to duplicate the critical parent task, and only tries to 

insert the current task with a proposed improved 

insertion method. Following Algorithm 1 shows a 

pseudo code of the AHAP algorithm. 

 

 

Algorithm 1. The AHAP algorithm 

▷First step 

    Take an ordered task list L 

    for each task in a DAG do 

        Compute an average computation cost ¯w (vi) 

    endfor 

    Calculate an average communication cost of a DAG 

    Calculate an average computation cost of a DAG 

    Calculate a communication to computation ratio ccr 

▷Second step 

    for each task in L do 

        Calculate a heterogeneity factor β 

    endfor 

▷Third step 

    Allocate an entry task ventry on an instance Sj,k that 

    provides EFT(ventry, Sj,k) 

    Remove ventry from L 

    for the first task vi in L do 

        Find dpred(vi) 

        if ccr > 1 +  β(dpred(vi)) / 2 

            Allocate vi with a duplication_method(vi, L) 

        else 

            Allocate vi with an improved_insertion_  

            method(vi, L) 

        endif 

    endfor 

 

 

If the AHAP algorithm decides to use a duplication 

method, it first calculates EFTs of the current task on 

each provisioned instances and selects an instance Sj,k 

that provides the minimum EFT(vi, Sj,k). Then checks if 

there is enough time slots to duplicate the critical 

parent task dpred(vi) on the Sj,k, where the task vi is 

scheduled. And also, assume that the dpred(vi) is 

duplicated on the Sj,k and checks if the duplication of 

the dpred(vi) reduces the EFT(vi, Sj,k). If the conditions 

are met, the dpred(vi) is duplicated on the Sj,k followed 

by allocating the vi on the Sj,k. If not, the vi is allocated 

on the Sj,k that provides the minimum EFT(vi, Sj,k). 

Finally, the vi is removed from L. Algorithm 2 shows a 

pseudo code of the duplication method. 

 

 

Algorithm 2. A duplication_method(vi, L) procedure 

    Select an instance Sj,k that minimizes EFT(vi, Sj,k) 

    if enough time slots on Sj,k to duplicate dpred(vi) 

    and duplication of dpred(vi) reduces EFT(vi, Sj,k) do

        Duplicate dpred(vi) on Sj,k 

        Allocate vi on Sj,k 

    else 

        Allocate vi on Sj,k 

    endif 

    Remove vi from L 

 

 

If the AHAP algorithm decides to use an insertion 

method, especially an improved insertion method, it 

checks if following conditions are met. 

Condition 1. For a task in an ordered task list, a next 

task in the list is a child task of the current task. 

Condition 2. Under condition 1, the current task is a 

critical parent task of the next task, the child task. 

Condition 3. Under condition 1, the current task and 

the next task are to be allocated on different instances. 

Condition 4. Under condition 1 to 3, moving the 

current task to the instance where the next task is 

allocated reduces the execution finish time of the next 

task. 

If all conditions are met, the AHAP algorithm 

allocates the current task where the next task is to be 

allocated to reduce the execution finish time of the 

child task, which can lead to a better schedule. If not, 

the AHAP algorithm uses a conventional insertion 

method to allocate the current task. 

In improved insertion method, the AHAP algorithm 

first checks if a next task vl in the ordered task list L is 

a child task of the current task vi. If not, the vi is 

allocated on an instance Sj,k which provides the 

minimum EFT(vi, Sj,k) with an insertion method, and 

the vi is removed from L. If the vl is a child task of the 

vi, find an instance Sj,k that minimizes EFT(vi, Sj,k) with 

an insertion method and assume allocating the vi on the 

Sj,k. With an assumption, find an instance Sm,n that 

minimizes EFT(vl, Sm,n) with an insertion method, and 

mark the execution finish time as an EFT1. Then, the 

AHAP algorithm checks if the vi is a critical parent 

task of the vl and if the Sj,k does not equals to the Sm,n. If 

any of both does not meet, the vi is allocated on the Sj,k 

and the vl is allocated on the Sm,n which are already 

found above. If both do meet, the AHAP algorithm 

assumes allocating the vi on the Sm,n where the vl is 

allocated, and calculate EFT(vi, Sm,n) followed by 

marking the execution finish time as an EFT2. If the 

EFT1 is smaller than the EFT2, which means moving 

the vi does not reduce the execution finish time of the vl, 

the vi is allocated on the Sj,k and the vl is allocated on 

the Sm,n. But if the EFT1 is larger than the EFT2, which 

means moving the vi reduces the execution finish time 

of the vl, both the vi and the vl are allocated on the Sm,n. 

Lastly, both the vi and the vl are removed from L. 

Algorithm 3 shows a pseudo code of the improved 
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insertion method. 

 

 

Algorithm 3. The improved insertion method 

A improved_insertion_method(vi, L) procedure 

    if next task vl in the list L is succ(vi) do 

        Select an instance Sj,k that minimizes EFT(vi, Sj,k) 

with 

        insertion 

        Assume allocating vi on Sj,k 

        Calculate EFT(vl, Sm,n) with insertion and mark as 

EFT1 

        if vi is dpred(vl) and Sj,k ≠  Sm,n do 

            Assume allocating vi on Sm,n 

            Calculate EFT(vl, Sm,n) and mark it as an EFT2

            if EFT1 < EFT2 do 

                Allocate vi on Sj,k 

                Allocate vl on Sm,n 

            else 

                Allocate vi on Sm,n 

                Allocate vl on Sm,n 

            endif 

        else 

            Allocate vi on Sj,k 

            Allocate vl on Sm,n 

        endif 

        Remove vi and vl from L 

    else 

        Select Sj,k that minimizes EFT(vi, Sj,k) with  

        insertion 

        Allocate vi on Sj,k 

        Remove vi from L 

    endif  
 

5 Performance Evaluation 

We have implemented a simulator to verify the 

performance of the proposed AHAP algorithm. The 

performance of the AHAP algorithm has been verified 

by applying the AHAP algorithm to existing 

scheduling heuristics. The graphs used in experiments 

are ones from STDGP (STanDard Task Graph Project) 

[17], and ones that model real world applications, such 

as FFT and GE. STDGP offers task graphs for fair 

performance comparison of the algorithms under the 

same conditions including task graphs generated from 

actual application programs. 

The input parameters for simulations were set to the 

following values. There are 4 or 5 values in each 

parameter and by combining them, we were able to 

simulate various input task graphs and VM instances of 

cloud computing environment with 360,000 times of 

simulations. 

The number of tasks in an input graph. v. The 

number of tasks in an input task graph. There are 180 

graphs for each number of tasks which have various 

graph topologies. v ∈ {100, 300, 500, 750} 

Communication to computation cost ratio. ccr. The 

ratio of the average communication cost of edges to the 

average computation cost of tasks in an input DAG. 

Low ccr indicates that an input DAG is computation 

intensive, and large ccr indicates that an input DAG is 

communication intensive. ccr ∈ {0.1, 0.5, 1.0, 2.5, 5.0} 

Computation resource heterogeneity factor. β. The 

heterogeneity factor for speed of computational 

resources. Low heterogeneity indicates that a 

computation cost of a task is almost equal on each 

computational resource, and large heterogeneity 

indicates that a computation cost of a task is 

significantly different on each computational resource. 

β ∈ {0.1, 0.5, 1.0, 1.5, 2.0} 

The number of provisioned VM instances. vm. The 

number of provisioned instances for execution of an 

application. vm ∈ {2, 4, 8, 16, 32} 

Main comparison metric is an SLR (Schedule 

Length Ratio). The SLR is a normalized value of the 

total execution time of an input DAG, which is the 

total execution time divided by the sum of the 

minimum execution time of tasks on a critical path. 

The SLR can be expressed as an equation (10). 

 

,

,

SLR
min { ( , )}

j k

i

S S i j k
v CP

total execution time

w v S
∈

∈

=
∑

 (10) 

where CP refers to the critical path. The SLR of a 

graph cannot be less than one since the denominator is 

the lower bound. The algorithm which gives the lowest 

SLR is the best algorithm in terms of the performance. 

The performance of the AHAP algorithm has been 

verified by applying the AHAP algorithm to the 

previous scheduling heuristics which aim to achieve 

the best performance in terms of execution time 

without regarding cost, such as the HCPFD, the HCT, 

and the PETS. The IC-PCP and the POSH are not 

included in the simulations because they aim to 

minimize user cost and as a result, there are significant 

performance gap between them. Since above 

scheduling heuristics are designed for a heterogeneous 

multiprocessor computing system, we have slightly 

modified and applied the algorithms to a cloud 

computing environment. 

Figure 4 shows an average SLR with respect to the 

number of tasks in an input graph. For each v, we ran 

22,500 times of simulations by combining ccr, β, and 

vm. The ones with the proposed AHAP algorithm 

outperforms the conventional algorithms in terms of an 

average SLR. An average SLR of the HCPFD 

algorithm with the AHAP algorithm is better than the 

conventional HCPFD algorithm by 6.31%, the HCT 

with the AHAP than the conventional HCT by 4.10%, 

and the PETS with the AHAP than the conventional 

PETS by 6.84%. As shown in Figure 4, the AHAP 
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algorithm provides better performance along with the 

increase of the number of tasks. 
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Figure 4. An average SLR with respect to v 

Figure 5 shows an average SLR with respect to 

communication to computation cost ratio. For each ccr, 

we ran 18,000 times of simulations by combining v, β, 

and vm. The ones with the proposed AHAP algorithm 

outperforms the conventional algorithms in terms of an 

average SLR, on all ccr values. An average SLR of the 

HCPFD algorithm with the AHAP algorithm is better 

than the conventional HCPFD algorithm by 3.80%, the 

HCT with the AHAP than the conventional HCT by 

2.79%, and the PETS with the AHAP than the 

conventional PETS by 5.51%. As shown in Figure 5, 

the AHAP algorithm shows better performance not 

only in computation intensive graphs but also in 

communication intensive graphs thanks to the selective 

resource allocation method and improved insertion 

method. 
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Figure 5. An average SLR with respect to ccr 

Figure 6 shows an average SLR with respect to 

heterogeneity factor. For each β, we ran 18,000 times 

of simulations by combining v, ccr and vm. The ones 

with the proposed AHAP algorithm outperforms the 

conventional algorithms in terms of an average SLR 

regardless of heterogeneity factor. An average SLR of 

the HCPFD algorithm with the AHAP algorithm is 

better than the conventional HCPFD algorithm by 

3.03%, the HCT with the AHAP than the conventional 

HCT by 2.83%, and the PETS with the AHAP than the 

conventional PETS by 6.12%. As shown in Figure 6, 

the AHAP algorithm shows better performance from 

low heterogeneity factor through high heterogeneity 

factor thanks to the selective resource allocation 

method and improved insertion method. 
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Figure 6. An average SLR with respect to β 

Figure 7 shows an average SLR with respect to the 

number of provisioned VM instances. For each vm, we 

ran 18,000 times of simulations by combining v, ccr, 

and β. The ones with the proposed AHAP algorithm 

outperforms the conventional algorithms in terms of an 

average SLR. An average SLR of the HCPFD 

algorithm with the AHAP algorithm is better than the 

conventional HCPFD algorithm by 2.78%, the HCT 

with the AHAP than the conventional HCT by 1.46%, 

and the PETS with the AHAP than the conventional 

PETS by 5.26%. As shown in Figure 7, the efficiency 

of the algorithms decrease in environments with more 

than 8 instances. However, the AHAP algorithm 

provides better performance despite of decreased 

efficiency. And according to the figure, leasing 8 

instances from the cloud provider when running 

applications with large scale data on the IaaS clouds 

might be the best choice considering both the 

performance and the cost. 
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Figure 7. An average SLR with respect to vm 
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Figure 8 and Figure 9 shows an average SLR with 

respect to the number of data points in FFT graphs and 

with respect to matrix size in GE graphs, respectively. 

For each number of data points in FFT graphs and for 

each matrix size in GE graphs, we ran 125 simulations 

by combining ccr, β, and vm. As shown in Figure 8, the 

ones with the AHAP algorithm outperforms the 

conventional algorithms in terms of an average SLR on 

all data points and all matrix sizes. In Figure 8, the 

PETS algorithm with the AHAP algorithm shows 

5.79% better performance when compared to the 

conventional one, and in Figure 9, the PETS algorithm 

with the AHAP algorithm shows 5.88% better 

performance than the conventional one. And especially, 

the PETS algorithm with the AHAP algorithm shows 

notable performance improvements in Figure 9. It can 

be analyzed that the notable performance improvements 

come from the duplications of tasks and proposed 

improved insertion method, of which the conventional 

algorithm does not utilize. 
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Figure 8. An average SLR with respect to the number 

of data points in FFT graaphs 
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Figure 9. An average SLR with respect to matrix size 

in GE graphs 

6 Conclusion 

In this paper, we presented a novel resource 

allocation algorithm for cloud computing environment, 

called the AHAP, and an improved insertion method. 

Unlike conventional algorithms, the AHAP algorithm 

utilizes both a duplication method and an improved 

insertion method according to the characteristics of 

environment. The AHAP algorithm allocates a task 

onto a VM instance after evaluating the possibilities of 

reducing the execution time of the two methods based 

on the characteristics of an input DAG, a ccr, and a 

target cloud computing environment, a β. And the 

improved insertion method allocates a task onto a VM 

instance with an insertion method while considering an 

execution finish time of a child task. The simulations 

with various parameters including multiple ccr and β 

shows that the proposed AHAP algorithm provides 

better performance than conventional algorithms. 

Further researches will be on finding more efficient 

criterion for choosing an allocation method with 

dynamic scaling of the number of VM instances. 
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