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Abstract 

To obtain greater flexibility and cost savings, 

outsourcing private data to public cloud servers while 

enabling users to search the data becomes the first choice 

for more and more users. In view of security, the private 

data must be encrypted before outsourcing which makes 

the method of traditional keyword search infeasible. 

Therefore, searchable encryption is extensively explored 

in recent years. Taking the practicality into account, 

multi-keyword ranked search over encrypted data is 

essential. However, almost all of existing multi-keyword 

ranked search schemes are suffering the security threats 

of non-volatile memory leakage attack. To solve this 

problem, a secure multi-keyword ranked search scheme 

which resists memory leakage attack (MRSS-ML) is 

proposed. The proposed scheme utilizes physically 

unclonable functions (PUFs) to randomize the keywords 

and document identifiers. Owing to the noisy properties 

of PUFs, the fuzzy extractor (FE) is used to recover the 

secret keys. To further enhance the security of the 

proposed scheme, an order-preserving function is 

selected to encode the similarity scores. MRSS-ML can 

resist the memory leakage attack from inner or external 

attackers. Security analysis and experimental results 

show that the MRSS-ML scheme is efficient whilst 

achieve higher security requirements against memory 

leakage attack. 

Keywords: Searchable symmetric encryption, Multi-

keyword, Ranked search, Memory leakage 

attack 

1 Introduction 

Cloud storage provides unlimited storage and 

computing capability and it enables users to save initial 

investment and facilitates data management. It has 

been widely accepted and used in various areas. 

However, when storage is moved from the local 

physical control of a company or individual to reside in 

a shared environment controlled by others, it brings 

security issues such as privacy protection. Usually, the 

user encrypts the data before it is outsourced to the 

server, so searching for the encrypted data becomes an 

urgent problem. 

Searchable encryption refers to the ability of users to 

search the encrypted data stored in the cloud server, 

and simultaneously ensure the security of data and the 

privacy of queries. As well known, searchable encryption 

is divided into searchable symmetric encryption (SSE) 

and searchable asymmetric encryption based on the 

cryptographic algorithm used. Boneh et al. [1] 

presented the problem of searching on data that is 

encrypted using a public key algorithm. Due to there 

are a large amount of data in cloud storage and public 

key encryption is very expensive, data is usually 

encrypted by symmetric cryptography algorithm. The 

first SSE scheme was proposed by Song et al. [2] in 

2000. Since then, searchable symmetric encryption has 

been extensively exploited. Accordingly, we will 

mainly focus on the construction of an efficient and 

secure SSE scheme. 

Although there are several secure and efficient 

multi-keyword ranked search schemes, barely all 

existing schemes do not take into account the security 

problem of memory leakage attack. To tackle this 

problem, Physically Unclonable Functions (PUFs) [3] 

are utilized to randomize the keywords and document 

identifiers. Besides, owing to the noisy properties of 

PUFs, the fuzzy extractor [4] is used to recover the 

decryption keys of the index, trapdoor and encrypted 

documents. The proposed searchable scheme improves 

the memory leakage-resilient SSE (MLR-SSE) scheme 

[5] to enable multi-keyword ranked search. Like the 

MLR-SSE scheme, the lookup table is built to retrieve 

the candidate document identifiers containing the 

interested keywords. Different from MLR-SSE, the 

similarity score table is constructed to achieve multi-

keyword ranked search, and a PUF is used to 

randomize the addresses of the score table. To further 
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enhance the security on the proposed scheme, we select 

an order-preserving function to encode the similarity 

score. With experimental results showing that the 

proposed scheme is efficient whilst ensuring stronger 

security, the contributions of this paper are summarized as: 

‧ A novel and secure multi-keyword ranked search 

scheme improving MLR-SSE scheme [5] is proposed, 

‧The proposed scheme is able to resist non-volatile 

memory attack from any possible attackers. 

The remainder of this paper is organized as follows. 

Section 2 presents related work and Section 3 describes 

the system model and security model, notations and 

preliminaries. Section 4 presents the proposed secure 

multi-keyword ranked search scheme which resists 

memory leakage attack (MRSS-ML). The security and 

performance analysis followed by Section 5, and 

finally, section 6 concludes the paper with future work. 

2 Related Work 

Song et al. [2] proposed the first SSE scheme, which 

only supports single keyword search. In order to enrich 

the search function and improve the search accuracy, 

there are a variety of methods and techniques, 

including multi keyword search [6-7], fuzzy and 

similarity search [8-11], dynamic search [12-13], 

multi-user search [14], ranked search [15-16] and 

verifiable search [17-18]. 

Cao et al. [6] proposed a secure multi-keyword 

ranked search (MRSE) scheme, where similarity 

measure of “coordinate matching” and “inner product 

similarity” were incorporated to quantitatively evaluate 

such similarity measure. This approach can return the 

ranked results of search according to the number of 

matching keywords. However, MRSE does not take the 

access frequencies of keywords into account. In 

addition, two dense matrices are used to encrypt secure 

index and trapdoor for document vector and query 

vector in MRSE. The efficiency of inner product will 

be significantly reduced when the number of keyword 

in the dictionary increases gradually. Besides, since the 

location of keywords is fixed, the vector structure 

cannot be modified after the keyword dictionary is 

generated. To solve these issue, Chen et al. [7] 

proposed an efficient dynamic multi-keyword ranked 

search (DMRS) scheme in which the sparse block 

matrices are utilized to replace the original dense 

matrices in the process of index construction and 

trapdoor generation. It will greatly save the user's 

computing resources. In DMRS, a reverse data 

structure is utilized to achieve the dynamic update 

operation of the document. 

Gajek [12] presented a dynamic symmetric 

searchable encryption from constrained functional 

encryption scheme, where the proposed scheme could 

realize logarithmic search efficiency in the size of 

keyword set and is proved to be secure based on the 

subgroup decision problem in bilinear groups. Yang et 

al. [13] proposed a dedicated and dynamic SSE scheme 

for e-healthcare applications where personal health 

information is generated and stored in the cloud 

periodically. Strizhov and Ray [14] proposed a secure 

and efficient multi-keyword similarity searchable 

encryption (MKSim), which extends the searchable 

encryption to multi-user setting. It is provably secure 

against adaptive chosen-keyword attacks (CKA2-

secure) in the random oracle model. Zhang et al. [16] 

presented a secure ranked multi-keyword search 

scheme in a multi-owner model (PRMSM). It utilizes 

an additive order and privacy preserving function 

family to rank the search results, as also applies a novel 

dynamic secret key generation protocol and a new data 

user authentication protocol to prevent the attackers 

from eavesdropping secret keys and pretending to be 

legal data users submitting searches. Furthermore, 

PRMSM supports efficient data user revocation. 

Wu et al. [19] worked on a survey that contains 

most searchable encryption schemes and analyzed 

individual contributions respectively. Poh et al. [20] 

gave a comprehensive survey on almost all existing 

SSE schemes. They summarized the development of 

SSE and provided detailed description on the 

constructions of SSE based on the proposed general 

framework. They compared these structures from the 

general search performance metrics, security models 

and the various characteristics and functionalities. 

Based on these studies, they outlined the challenges 

and suggested future research directions. 

However, the security of all existing SSE schemes is 

based on the assumption that the data owner holds a 

secret key that is unknown to the adversary. 

Unfortunately, in practice, attackers are often able to 

obtain some or even all of data owner’s secret keys by 

a great variety of inexpensive and fast side channel 

attacks. Aimed by such attacks, all existing SSE 

schemes are no longer secure. In MRSE scheme [6], 

the index and trapdoor are respectively generated from 

a binary vector that indicates whether the keyword 

appears in the corresponding document or query. To 

guarantee the privacy of the proposed scheme, 

document vector and query vector are encrypted by 

multiplying two dense matrices. Moreover, the 

similarity score of query keywords and the document is 

derived by the inner product of trapdoor with each sub-

index. It is worth noting that the secret keys, namely 

the two dense matrices, should be kept well in owner’s 

non-volatile memory. However, the owner’s non-

volatile memory maybe attacked by possible attackers 

in the cloud storage environment. 

To solve this problem, Dai et al. [5] proposed a 

secure memory leakage-resilient SSE scheme (MLR-

SSE) for the first time, which could meet the higher 

security requirements. Regretfully, MLR-SSE only 

supports single keyword search. 

To resist non-volatile memory leakage attack and 
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achieve multi-keyword ranked search, we improve the 

MLR-SSE scheme to incorporate the multi-keyword 

similarity search and propose a secure multi-keyword 

ranked search scheme (MRSS-ML). The index 

construction of MRSS-ML is improved from the 

scheme proposed in [14] which is based on SSE-2 

inverted index data construction previously introduced 

in [21]. In order to realize the higher security 

requirements, keywords or document identifiers are 

randomized by a physically unclonable function (PUF). 

Due to the noisy influence of PUFs, the fuzzy extractor 

is chosen to recover the secret keys. Moreover, a 

similarity score table is constructed to achieve the 

functionality of multi-keyword ranked search. Besides, 

the order-preserving function [16] is improved to 

protect the privacy of similarity between keywords and 

documents. With these steps, a secure multi-keyword 

ranked search scheme against memory leakage attack 

(MRSS-ML) is achieved. 

3 MRSS-ML Definition 

3.1 Problem Formulation 

3.1.1 System Model  

There are three different entities in MRSS-ML as 

illustrated in Figure 1: the data owner, the data user 

and cloud server. The data owner intends to outsource 

a document collection D to cloud server. He will first 

extract keywords collection W' from D and construct a 

keyword dictionary W with some inserted dummy 

keywords. Next, he constructs an encrypted searchable 

index I from collection D, and each document in D is 

encrypted to generate one encrypted document 

collection C. Finally, he sends the encrypted index I 

and the collection C to cloud server. Data users are 

entities that are authorized to access the documents of 

the data owner. Cloud server stores the encrypted 

searchable index and the collection of encrypted 

documents. It has the responsibility to search over the 

encrypted index and return the top-k most relevant 

encrypted documents to users. 

Trapdoor and secret keys

trapdoor

Top-K results

Cloud Server

Request
Data Owner Data User

 

Figure 1. System model of the MRSS-ML scheme 

3.1.2 Security Model 

In this sub-section, we introduce the stronger attack 

model, called as full non-volatile memory attack model. 

Definition 1. (Non-volatile Memory Attacker [22]): 

Let S be secret information stored in data owner’s non-

volatile memory. Assume α as a function that: α(x) ≤ x, 

x∈N, where N is the set of natural numbers. A α-

non-volatile memory attacker A can access the attack 

oracle O that takes as adaptively chosen a 

polynomial-size attack function g(•) and outputs g(S) 

under the condition that the whole number of bits of 

g(S) shall not exceed α(|S|). 

Definition 2. (Full Non-volatile Memory Attack): 

An attack model is called full non-volatile memory 

attack if an attacker A meet the requirements of 

Definition 1 and α = id defined in [22]. 

In the traditional attack model, an attacker is 

assumed that he could not access any information 

about the secret keys stored in non-volatile memory. 

Obviously, this assumption is unreasonable in the 

actual environment. For considerations of security, the 

long-term secret keys should not be stored in non-

volatile memory any longer. Fortunately, the 

physically unclonable function presented in [3] can be 

used to generate the secret keys in real time, with 

which the keys need not be stored. Accordingly, the 

attacker would not be able to obtain any information 

about the secret keys stored in non-volatile memory. 

3.2 Notations and Preliminaries 

3.2.1 Notations 

In this paper, notations presented in Table 1 are used. 

Table 1. Notation 

D 
The plaintext collection, denoted as a set of n 

documents D = (D1, D2, …, Dn). 

C 
The encrypted document collection, stored in cloud 

server and denoted as C = (C1, C2, …, Cn). 

I The encrypted searchable index. 

Ω The all possible keyword set extracted from D. 

W' The distinct keyword set extracted from D. 

W
The keyword dictionary with dummy keywords W = 

(w1, w2, …, wm). 
Q The interested search keywords which is the subset of W. 

Tw The trapdoor for the search request Q. 

3.2.2 Preliminaries 

In this sub-section, background for the proposed 

scheme follows next. 

Physically unclonable functions. Willers et al. [23] 

think that a key requirement for most security solutions 

is to provide secure cryptographic key storage in a way 

that will easily scale in the age of the Internet of 

Things. They propose a microelectromechanical 

systems (MEMS)-based PUF. Park et al. [24] propose 
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PUFSec, a new device fingerprint-based security 

architecture which aims to design a computationally 

lightweight security software system architecture to 

trade-off dilemma between security enhancement and 

computation overhead. PUFs will be widely used 

gradually. 

A Physically Unclonable Function (PUF) firstly 

presented in [3] is a noisy function. As described in 

[25], a PUF family P is composed of the pair of 

algorithms Sample and Eval. The Sample takes the 

security parameter as input and output the index 

identifier idp of the PUF family, and the Eval takes a 

stimulus s as input and output the response r. 

Definition 3. (Physically Unclonable Functions, 

PUFs): A pair Ρ = (Sample, Eval) is a family of the tri-

tuple (l, d, δ) PUFs if it meets the properties as follows: 

‧ Unpredictability: For a set Φ of the stimulus-

response pair, it is difficult to predict the response r′ 

for a new random stimulus s′ in a small error range, 

where Φ = {si, ri, 1≤i≤q} and s′, r′∉ Φ. With the 

property, a PUF is called an (l, d, δ) PUF. 

‧ Evaluation: The Eval takes security parameter 1λ, 

idp and s as input, and it efficiently outputs the 

corresponding r. 

‧ Bounded Noise: For all stimulus s∈ {0, 1}l, the 

Hamming distance d1,2 of any two responses r1 and 

r2 should satisfy d1,2 <d when the algorithm Eval(1λ, 

idp, s) is run twice, where d is a noise bound. 

‧ Unclonability: Given a PUF, there is no efficient 

technique, which is able to clone another PUF′ and 

PUF′ = PUF. 

‧ One-wayness: Given a PUF and a response r, the 

corresponding stimulus s cannot be founded and 

simultaneously satisfies the equation: Eval(1λ, idp, s) 

= r. 

Fuzzy extractor. From the above introduction, the 

PUF can evaluate a physical stimulus and output 

possibly different responses, which relies on a physical 

architecture. To overcome the noisy drawback of PUF, 

the properties of fuzzy extractor can be used to recover 

the necessary secret information. The fuzzy extractor is 

introduced in [4] as follows: 

Definition 4. (Fuzzy Extractor, FE): An (l, d, δ) 

fuzzy extractor is composed of two efficient algorithms 

(Gen, Rep) as follows: 

Gen: The algorithm takes an l-bit string w as input, it 

outputs a random string st∈{0, 1}δ and an auxiliary 

data ad∈{0, 1}*. 

Rep: The reproduction algorithm takes an l-bit noisy 

string w′ and the auxiliary data ad as inputs, it outputs 

a δ-bit random string st. 

Fuzzy Extractor has the following two properties. 

‧ Correctness: Let dis be the Hamming distance of 

two variables w and w′. The reproduction algorithm 

FE.Rep(w′, ad)=st is realized if and only if dis ≤ d. 

‧ Security: Let U is a uniform distribution with min-

entropy δ, the noisy string w as input is selected 

from U, the output st would be distributed as U, 

even if the auxiliary data string ad is revealed. 

Order-preserving function. In order to preserve the 

similarity score from a potential attacker, the order-

preserving function (OPF) is utilized to encode the 

similarity score. The formalization of OPF is improved 

from [16] as follows. 

The order-preserving function f(x)=∑1≤i≤τ ai·h(x, i)+r, 

where τ is the degree of the function, ai is a positive 

coefficient, h(x, i) is a recursive computation, and r is a 

random number that preserves the function from the 

cloud server. h(x, i) is further defined as: 
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Here, both of β, ε are two constant numbers. In order 

to guarantee the ranked results, the number r should 

satisfy: r ∈  (0, 2
γ-1

), where γ is an integer. The 

detailed definition, theorem and proof of OPF are 

presented in [16]. 

4 The MRSS-ML Scheme 

In this section, we present the formal definition of 

MRSS-ML scheme and the detailed construction next. 

4.1 Formal Definition 

Definition 5. (Multi-keyword Ranked Search 

Scheme against Memory Leakage, MRSS-ML): An 

MRSS-ML scheme consists of five polynomial-time 

algorithms MRSS-ML = (KeyGen, BuildIndex, TrapdoorGen, 

Search, Decrypt), such that: 

K←Keygen(1
λ
): is a probabilistic algorithm that is 

run by data owner to setup the scheme. It takes a 

security parameter λ, and returns a secret key K =  

( PUF1, PUF2, PUF3) . 

(I, C)←BuildIndex(K, D): is run by data owner to 

generate indexes and encrypted document set. It takes a 

secret key K and a document collection D as inputs, 

and returns an index I and an encrypted document set C. 

Tw←TrapdoorGen(K, Q): is run by user to 

generate a trapdoor to search keywords that is a subset 

of dictionary. It takes a secret key K and interested 

keywords Q as inputs, and returns a trapdoor Tw
. 

IDw←Search(I, Tw): is run by cloud server to 

search for documents in D that contains words Q. It 

takes an index I and a trapdoor Tw as inputs, and returns 

IDw, the set of top-k most relevant ranked document 

identifiers. 

Dw←Decrypt(K, IDw): is run by user to decrypt the 

set of the top-k most relevant ranked encrypted 

documents that contain words Q. It takes a secret key K 

and the top-k most relevant ranked document identifier 

set IDw as inputs, and returns the top-k most relevant 

ranked document set Dw that contains search keywords Q. 
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Keygen(1
λ
): 

1. Choose a (p+ log
 2
n, d1, δ1) PUF1, a (t, d2, δ2) PUF2 and a (t, d3, δ3) PUF3. 

2. Output a secret key K = (PUF1, PUF2, PUF3). 

BuildIndex(K, D): 

1. Initialization: 

(a) scan D and build W', the set of distinct words in D. 

(b) construct a new dictionary W containing W' and several inserted dummy keywords. 

(c) for each word wi ∈ W, build D(wi). 

2. Build look-up table T:  

(a) for wi ∈ W and j∈ [1, n], compute uti,j = PUF1(wi||j) and (rti,j, adti,j)←FE1.Gen(uti,j). 

(b) for wi ∈ W and Dj ∈ D, compute usi,j = PUF3(id(Di,j)), compute idci,j = Enc(usi,j, idi,j), where idci,j 

 is the jth encrypted identifier in D(wi). 

(c) for wi ∈ W and j ∈ [1, |D(wi)|], set T[rti,j] = idci,j. If v < �, �-v random strings with m1 bits are 

 assigned in T for exactly m times, and the addresses are set to random values. 

3. Generate an auxiliary query table T':  

(a) for i ∈ [1, m] and j ∈ [1, n], T'[wi] = adti,j. 

(b) for i ∈ [m+1, |Ω|] and j ∈ [1, n], T'[wi] = adrti,j, where adrti,j is a randomly generated string with 

 the same length as adti,j. 

4. Build score table Δ: 

(a) for Dj ∈ D and wi ∈ W, compute the similarity score Sj,i = Score(Dj, wi), then compute CSj,i = f(Sj,i), 

 where f(•) is an order-preserving function. 

(b) for Dj ∈ D and wi ∈ W, set Δ[idcj,i] = CSj,i. 

5. Generate encrypted document Cj: 

for Dj∈ D, compute ucj=PUF2(id(Dj)) and (rcj, adcj)←FE2.Gen(ucj), then Cj= (Enc(rcj, Dj), adcj). 

6. Output index I = (T, Δ) and encrypted document collection C = (C1, C2, …, Cn). 

TrapdoorGen(K, Q): 

1. For wi ∈ Q and j ∈ [1, n], compute ûti,j = PUF1(wi||j) and rti,j = FE1.Rep(ûti,j, adti,j), where adti,j is an   

        auxiliary data stored in T'. 

2. Output Tw = {Twi
, 1≤i≤q}, where Twi

 = (rti,1, rti,2, …, rti,n). 

Search(I, Tw):  

1. Traverse the look-up table T according to Tw: for 1≤i≤q and j ∈ [1, n], if T[rti,j] ≠ ,⊥  the value idci,j is  

        inserted into the encrypted identifier set IDC matching the searched keywords. 

2. Traverse the score table Δ according to IDC: for idcj,i ∈ IDC, if Δ[idcj,i] ≠ ⊥, compute VSj =∑1≤i≤qCSj,i. 

3. Output the top-k most relevant document identifier set IDCw = {id(Dj), 1≤j≤k}. 

Decrypt(K, IDw): 

1. Server returns the corresponding encrypted document set Cw according to IDCw. 

2. For each Dj, j ∈ [1, k], user computes ucj = PUF2(id(Dj)) and rcj = FE2.Rep(ucj, adcj). 

3. User computes Dwj
 = Dec(rcj, Cwj

), j ∈ [1, k]. 

4. Output the top-k most relevant document set Dw = (Dw1
, Dw2

, …, Dwk
) containing the search keywords. 

4.2 The MRSS-ML Construction 

The MRSS-ML scheme improves the MLR-SSE 

scheme [5] to achieve multi-keyword ranked search. In 

 

this sub-section, we detail the concrete construction of 

MRSS-ML scheme which is illustrated in Figure 2. 

 

Figure 2. The construction of  

In MRSS-ML, a document collection D is associated 

with an encrypted index I. The index I consists of two 

tables. The first one is the look-up table T. Before 

construction, a keyword dictionary W with inserted 

dummy keywords and D(wi) for each word wi ∈ W 

are built. For i ∈ [1, n] and wi ∈ W, let v = ∑|D(wi)| 

and u = max(|Di|), then ṽ = n·u, where |Di| denote the 

number of keywords extracted from the document Di.  

MRSS-ML scheme 

For wi ∈  W and j∈  [1, n], we use a physically 

unclonable function (PUF1) to randomize the 

keywords. Next, two groups of data are generated by 

the generation algorithm of fuzzy extractor (FE1.Gen). 

The first one rti,j is a key used to randomize the address 

of tuples in T. The other adti,j is an auxiliary data. For i 

∈ [1, m] and j ∈ [1, n], the adti,j is stored in another 

table T' stored in data owner’s non-volatile memory. 
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Let Ω be the set of all possible keywords extracted 

from D, and let |Ω| be the number of all possible 

keywords. For i ∈  [m+1, |Ω|] and j ∈  [1, n], the 

randomly generated strings adrti,j are inserted in T'. 

The auxiliary data adti,j is used to recover the key rti,j in 

the process of trapdoor generation. Next, we use 

another PUF3 to calculate the random string usi,j of the 

document identifiers containing the keyword wi. Then, 

the symmetric encryption is employed to encrypt the 

document identifiers, and the symmetric key is usi,j. The 

encrypted identifiers containing the keyword wi are 

inserted in the entries of the randomized address in T, 

and the remaining entries of T are set to random strings. 

The other table is the similarity score table Δ. We 

utilize the TF-IDF method to compute the similarity 

score of the document Dj and the keyword wi. The 

score is encoded by an order-preserving function 

improved from [16]. The sum of similarity scores is 

used as the metric to rank the queried results. Next, the 

addresses of Δ are randomized by the encrypted 

document identifiers, and the encoded scores are 

inserted in these entries of Δ. Another PUF2 is used to 

generate the random string of the identifier of the 

document Dj. The generation algorithm FE2.Gen of 

fuzzy extractor is called to generate two groups of data. 

The first one rci,j is used as a key to encrypt Dj, and 

adci,j is used as an auxiliary data to recover the key rci,j. 

The data owner stores the index I on the cloud server 

with the encrypted document collection C. As one user 

is authorized to retrieve the documents that contain the 

keyword wi (wi ∈ Q, where Q is a set of the interested 

searched keywords), he computes the trapdoor 

encryption key by calling the function PUF1 and the 

reproduction algorithm FE1.Rep of fuzzy extractor. 

Once receiving the trapdoor from user, the server 

traverses the look-up table T to obtain a candidate 

document identifier set IDC. Then, the server traverses 

Δ and computes the sum of the encoded score. Finally, 

the user uses PUF2 and FE2.Rep to recover the secret 

keys which are used to decrypt the encrypted top-k 

most relevant documents. 

5 Security and Performance Analysis 

The security and performance analysis of MRSS-

ML scheme are given in this section. 

5.1 The Security Analysis 

From the previous description, several dummy 

keywords are inserted into the index, which is used to 

prevent keyword frequency analysis from the potential 

attackers. The document collection is encrypted by 

symmetric encryption algorithm, since the attackers 

cannot learn anything about documents if the 

encryption algorithm is secure. We mainly focus on 

analyzing the security of index, trapdoor and search 

pattern as follows. 

Theorem 1. The scheme MRSS-ML is semantically 

secure against full non-volatile memory attack if the 

PUFs used in the proposed scheme satisfy the 

definition 3 (described in section 3.2.2A). 

Proof of index security. In the proposed scheme, the 

index consists of a look-up table T and a score table Δ. 

In order to hide the number of keywords in dictionary 

and document identifiers containing the keyword wi, 

the entries of T are equal to the number of keywords 

extracted from the document Di. Additionally, the 

addresses of these entries are set to random strings. 

Besides, the entries of Δ are processed in the similar 

way. Thanks to the unpredictability of PUFs and the 

security of fuzzy extractor (FE), the addresses of T 

and Δ cannot be computed by a full non-volatile 

memory attacker. Furthermore, the similarity scores 

are encoded with an order-preserving function. 

Assume that an attacker has selected n encoded 

scores for the same input Sj,i according to the 

equation f(x)=∑1≤i≤τ ai·h(x, i)+r, after that, the attacker 

constructs n equations. However, the attacker cannot 

break the order-preserving function, since n 

equations have n+1 variables. Therefore, the 

confidentiality of similarity score is protected. 

Proof of trapdoor unlinkability. Assume an attacker 

independently chooses a PUF′ and a FE′, and obtains 

the auxiliary data stored in a non-volatile memory. The 

attacker can compute ut′i,j = PUF′(wi||j) and rt′i,j = 

FE′.Rep(ut′i,j, adti,j). However, because of the 

unpredictability of PUFs and the security of FE, the 

trapdoor T′w = {T′wi
, 1≤i≤q}, where T′wi

 = ( rt′i,1, rt′i,2,…, 

rt′i,n) is different from the real one Tw described in Figure 

2. Thus, the keyword privacy and the trapdoor 

unlinkability are reinforced. 

Proof of search security. Suppose that an attacker 

monitors the user's search process in real time, and he 

can get the input keywords. Then, the attacker chooses 

two PUF (PUF″ and PUF‴ ), an FE″, and a symmetric 

encryption algorithm Enc, and he is able to get the 

auxiliary data stored in a non-volatile memory. 

Regardless of whether the keyword wi appears or not, 

the attacker can generate a new trapdoor as the 

following process: compute ut″i,j = PUF″(wi||j) and 

rt″i,j = FE″.Rep(ut″i,j, adti,j), then T″w = {T″wi
, 1≤i≤q}, 

where T″wi
 =( rt″i,1, rt″i,2, …, rt″i,n). For 1≤i≤q and j ∈ 

[1, n], the attacker also can set T[rt″i,j], and for id(Dj) 

∈ ID and wi ∈ Q, compute us‴ j = PUF‴ (id(Dj)) 

and idc‴ i,j = Enc(us‴ i,j, idi,j), then set Δ[idc‴ i,j]. 

Obviously, if the unpredictability of PUFs and the 

security of FE can be guaranteed, the new trapdoor 

T″w will not be equal to the real one Tw described in 

Figure 2 and the T[rt″i,j] and Δ[idc‴ i,j] will always be 

⊥. Therefore, the attacker cannot obtain any information 

about the documents and keywords even if the secret 

keys stored in non-volatile memory are given. 
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5.2 Performance Analysis 

In this sub-section, we analyze the performance of 

the proposed MRSS-ML scheme. From the introduction 

in [3], the efficiency of PUFs is almost equal to hash 

function. Accordingly, we use a hash function instead 

of PUF to evaluate the performance of MRSS-ML 

scheme. Experiments are coded using Java on PC with 

Intel core i5-M480 2.67GHz Processor, 6 GB memory, 

1GB AMD Radeon HD 6400M graphics card, running 

Win7 (64 bit) system. The performance of the 

proposed scheme is compared with the MRSE scheme 

[6], meanwhile the overhead of index construction, 

trapdoor generation and search will be compared and 

analyzed next. 

5.2.1 Storage Overhead 

From the above detailed description of the MRSS-

ML scheme in section 4, we can see that the size of the 

index is mainly determined by the size of document 

collection and the keyword dictionary. As shown in 

Table 2, the index sizes of two schemes grow linearly 

with the number of keywords. Because the look-up 

table and similarity score table are built in index 

construction, the MRSS-ML scheme takes up more 

storage space. 

Table 2. Size of index with n=1000 

size of dictionary 1000 2000 3000 4000 5000

MRSE(MB) 15.25 30.5 45.75 61 76.25

MRSS-ML(MB) 34.33 68.66 102.99 137.33 171.66 

 

In MRSE scheme, the trapdoor of queried keywords 

is generated according to the keywords dictionary. As 

illustrated in Table 3, the size of trapdoor in MRSE 

scheme grows linearly with the number of keywords. 

However, the size of trapdoor in the MRSS-ML 

scheme is not affected. The reason lies in that the 

trapdoor is calculated only for queried keywords. 

Table 3. Size of trapdoor with n=1000, q=20 

size of dictionary 2000 4000 6000 8000 10000 

MRSE(KB) 15.63 31.25 46.88 62.5 78.13 

MRSS-ML(KB) 0.20 0.20 0.20 0.20 0.20 

5.2.2 Computing Overhead 

Index construction. In the MRSS-ML scheme, index 

construction consists of two steps. The first one is to 

build a look-up table. Another one is the construction 

of similarity score table. Likewise, in MRSE scheme, 

the index construction includes two processes. The 

former one is generating a data vector according to the 

keyword dictionary, while the latter is encrypting a set 

of data vectors. Obviously, the index construction 

relies on the keyword dictionary extracted from the 

document collection. Therefore, the time of building 

whole index is related to the number of documents and 

keywords. Figure 3(a) shows that given the same 

dictionary (m=2000), the time overhead of index 

construction for the two schemes increases linearly 

with the increasing number of documents. Figure 3(b) 

demonstrates that, given the same number of files 

(n=1000), the time overhead of index construction of 

MRSE increases exponentially. It can be seen that the 

time overhead of index construction of MRSS-ML 

scheme is better in both situations. 

Trapdoor generation. Through theoretic analysis, the 

efficiency of trapdoor generation will be better than 

index construction. Figure 4(a) shows that the time of 

generating a trapdoor in MRSE increases dramatically 

as the number of keywords increases. Figure 4(b) 

demonstrates that the efficiency of trapdoor generation 

in MRSS-ML scheme is about 60 times better than that 

of MRSE scheme. In MRSE, the efficiency of 

generating a trapdoor is mainly affected by the large 

scale of matrices. In MRSS-ML, the time of trapdoor 

generation is determined by the number of queried 

keywords. Besides, the efficiency of PUFs and fuzzy 

extractor determines that the proposed scheme is better 

than MRSE. 

Search. In search process, the cloud server is 

responsible for computing and ranking similarity 
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scores. Figure 5 shows that the search overhead is 

mainly determined by the size of documents collected 

and the number of keywords in the dictionary. As 

demonstrated in the figures, the growth of search time 

of MRSE is obviously higher than that of MRSS-ML. 

It can be predicted that the search time of MRSE will 

be more than MRSS-ML when the size of documents 

and keyword dictionary is large. 

6 Conclusion and Future Work 

In this paper, we present a novel multi-keyword 

ranked search scheme that resists to memory leakage 

attack (MRSS-ML). Like the MLR-SSE scheme, the 

look-up table is built to retrieve the candidate 

document identifiers containing the interested 

keywords. Different from the MLR-SSE, the score 

table is constructed to achieve multi-keyword ranked 

search, and a PUF is used to randomize the addresses 

of the score table. To further enhance the security of 

the proposed scheme, we select an order-preserving 

function to encode the similarity scores. Considering 

the noisy defects of PUFs, the fuzzy extractor is chosen 

to recover the secret keys. From the above performance 

analysis, the proposed scheme is efficient. At the same 

time, it can achieve higher security requirements 

against memory leakage attack. 

In fact, there are many other challenging problems 

in SSE schemes. Most of SSE schemes mainly 

consider the security threats from the cloud server. 

Actually, there are many security challenges in a multi-

user scheme. Fine-grained access authorization and the 

revocation of the user are largest ones. As future work, 

we will suggest and improve the SSE scheme to handle 

these issues, as well to explore supporting other multi-

keyword functionalities over encrypted data, e.g., 

multi-owner setting, as also integrity check of rank 

order in search results. 
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