
A Secure Multi-keyword Ranked Search over Encrypted Cloud Data against Memory Leakage Attack 167

A Secure Multi-keyword Ranked Search over Encrypted Cloud

Data against Memory Leakage Attack

Lanxiang Chen1,2, Linbing Qiu1,2, Kuan-Ching Li3,4, Shuming Zhou1,2*

1 College of Mathematics and Informatics, Fujian Normal University, China
2 Key Laboratory of Network Security and Cryptology, Fujian Normal University, China

3 Department of Computer Science and Information Engineering (CSIE), Providence University, Taiwan
4 Hubei University of Education, China

lxiangchen@fjnu.edu.cn, 975201835@qq.com, kuancli@gm.pu.edu.tw, zhoushuming@fjnu.edu.cn

*Corresponding Author: Lanxiang Chen; E-mail: lxiangchen@fjnu.edu.cn

DOI: 10.3966/160792642018011901016

Abstract

To obtain greater flexibility and cost savings,

outsourcing private data to public cloud servers while

enabling users to search the data becomes the first choice

for more and more users. In view of security, the private

data must be encrypted before outsourcing which makes

the method of traditional keyword search infeasible.

Therefore, searchable encryption is extensively explored

in recent years. Taking the practicality into account,

multi-keyword ranked search over encrypted data is

essential. However, almost all of existing multi-keyword

ranked search schemes are suffering the security threats

of non-volatile memory leakage attack. To solve this

problem, a secure multi-keyword ranked search scheme

which resists memory leakage attack (MRSS-ML) is

proposed. The proposed scheme utilizes physically

unclonable functions (PUFs) to randomize the keywords

and document identifiers. Owing to the noisy properties

of PUFs, the fuzzy extractor (FE) is used to recover the

secret keys. To further enhance the security of the

proposed scheme, an order-preserving function is

selected to encode the similarity scores. MRSS-ML can

resist the memory leakage attack from inner or external

attackers. Security analysis and experimental results

show that the MRSS-ML scheme is efficient whilst

achieve higher security requirements against memory

leakage attack.

Keywords: Searchable symmetric encryption, Multi-

keyword, Ranked search, Memory leakage

attack

1 Introduction

Cloud storage provides unlimited storage and

computing capability and it enables users to save initial

investment and facilitates data management. It has

been widely accepted and used in various areas.

However, when storage is moved from the local

physical control of a company or individual to reside in

a shared environment controlled by others, it brings

security issues such as privacy protection. Usually, the

user encrypts the data before it is outsourced to the

server, so searching for the encrypted data becomes an

urgent problem.

Searchable encryption refers to the ability of users to

search the encrypted data stored in the cloud server,

and simultaneously ensure the security of data and the

privacy of queries. As well known, searchable encryption

is divided into searchable symmetric encryption (SSE)

and searchable asymmetric encryption based on the

cryptographic algorithm used. Boneh et al. [1]

presented the problem of searching on data that is

encrypted using a public key algorithm. Due to there

are a large amount of data in cloud storage and public

key encryption is very expensive, data is usually

encrypted by symmetric cryptography algorithm. The

first SSE scheme was proposed by Song et al. [2] in

2000. Since then, searchable symmetric encryption has

been extensively exploited. Accordingly, we will

mainly focus on the construction of an efficient and

secure SSE scheme.

Although there are several secure and efficient

multi-keyword ranked search schemes, barely all

existing schemes do not take into account the security

problem of memory leakage attack. To tackle this

problem, Physically Unclonable Functions (PUFs) [3]

are utilized to randomize the keywords and document

identifiers. Besides, owing to the noisy properties of

PUFs, the fuzzy extractor [4] is used to recover the

decryption keys of the index, trapdoor and encrypted

documents. The proposed searchable scheme improves

the memory leakage-resilient SSE (MLR-SSE) scheme

[5] to enable multi-keyword ranked search. Like the

MLR-SSE scheme, the lookup table is built to retrieve

the candidate document identifiers containing the

interested keywords. Different from MLR-SSE, the

similarity score table is constructed to achieve multi-

keyword ranked search, and a PUF is used to

randomize the addresses of the score table. To further

168 Journal of Internet Technology Volume 19 (2018) No.1

enhance the security on the proposed scheme, we select

an order-preserving function to encode the similarity

score. With experimental results showing that the

proposed scheme is efficient whilst ensuring stronger

security, the contributions of this paper are summarized as:

‧ A novel and secure multi-keyword ranked search

scheme improving MLR-SSE scheme [5] is proposed,

‧The proposed scheme is able to resist non-volatile

memory attack from any possible attackers.

The remainder of this paper is organized as follows.

Section 2 presents related work and Section 3 describes

the system model and security model, notations and

preliminaries. Section 4 presents the proposed secure

multi-keyword ranked search scheme which resists

memory leakage attack (MRSS-ML). The security and

performance analysis followed by Section 5, and

finally, section 6 concludes the paper with future work.

2 Related Work

Song et al. [2] proposed the first SSE scheme, which

only supports single keyword search. In order to enrich

the search function and improve the search accuracy,

there are a variety of methods and techniques,

including multi keyword search [6-7], fuzzy and

similarity search [8-11], dynamic search [12-13],

multi-user search [14], ranked search [15-16] and

verifiable search [17-18].

Cao et al. [6] proposed a secure multi-keyword

ranked search (MRSE) scheme, where similarity

measure of “coordinate matching” and “inner product

similarity” were incorporated to quantitatively evaluate

such similarity measure. This approach can return the

ranked results of search according to the number of

matching keywords. However, MRSE does not take the

access frequencies of keywords into account. In

addition, two dense matrices are used to encrypt secure

index and trapdoor for document vector and query

vector in MRSE. The efficiency of inner product will

be significantly reduced when the number of keyword

in the dictionary increases gradually. Besides, since the

location of keywords is fixed, the vector structure

cannot be modified after the keyword dictionary is

generated. To solve these issue, Chen et al. [7]

proposed an efficient dynamic multi-keyword ranked

search (DMRS) scheme in which the sparse block

matrices are utilized to replace the original dense

matrices in the process of index construction and

trapdoor generation. It will greatly save the user's

computing resources. In DMRS, a reverse data

structure is utilized to achieve the dynamic update

operation of the document.

Gajek [12] presented a dynamic symmetric

searchable encryption from constrained functional

encryption scheme, where the proposed scheme could

realize logarithmic search efficiency in the size of

keyword set and is proved to be secure based on the

subgroup decision problem in bilinear groups. Yang et

al. [13] proposed a dedicated and dynamic SSE scheme

for e-healthcare applications where personal health

information is generated and stored in the cloud

periodically. Strizhov and Ray [14] proposed a secure

and efficient multi-keyword similarity searchable

encryption (MKSim), which extends the searchable

encryption to multi-user setting. It is provably secure

against adaptive chosen-keyword attacks (CKA2-

secure) in the random oracle model. Zhang et al. [16]

presented a secure ranked multi-keyword search

scheme in a multi-owner model (PRMSM). It utilizes

an additive order and privacy preserving function

family to rank the search results, as also applies a novel

dynamic secret key generation protocol and a new data

user authentication protocol to prevent the attackers

from eavesdropping secret keys and pretending to be

legal data users submitting searches. Furthermore,

PRMSM supports efficient data user revocation.

Wu et al. [19] worked on a survey that contains

most searchable encryption schemes and analyzed

individual contributions respectively. Poh et al. [20]

gave a comprehensive survey on almost all existing

SSE schemes. They summarized the development of

SSE and provided detailed description on the

constructions of SSE based on the proposed general

framework. They compared these structures from the

general search performance metrics, security models

and the various characteristics and functionalities.

Based on these studies, they outlined the challenges

and suggested future research directions.

However, the security of all existing SSE schemes is

based on the assumption that the data owner holds a

secret key that is unknown to the adversary.

Unfortunately, in practice, attackers are often able to

obtain some or even all of data owner’s secret keys by

a great variety of inexpensive and fast side channel

attacks. Aimed by such attacks, all existing SSE

schemes are no longer secure. In MRSE scheme [6],

the index and trapdoor are respectively generated from

a binary vector that indicates whether the keyword

appears in the corresponding document or query. To

guarantee the privacy of the proposed scheme,

document vector and query vector are encrypted by

multiplying two dense matrices. Moreover, the

similarity score of query keywords and the document is

derived by the inner product of trapdoor with each sub-

index. It is worth noting that the secret keys, namely

the two dense matrices, should be kept well in owner’s

non-volatile memory. However, the owner’s non-

volatile memory maybe attacked by possible attackers

in the cloud storage environment.

To solve this problem, Dai et al. [5] proposed a

secure memory leakage-resilient SSE scheme (MLR-

SSE) for the first time, which could meet the higher

security requirements. Regretfully, MLR-SSE only

supports single keyword search.

To resist non-volatile memory leakage attack and

A Secure Multi-keyword Ranked Search over Encrypted Cloud Data against Memory Leakage Attack 169

achieve multi-keyword ranked search, we improve the

MLR-SSE scheme to incorporate the multi-keyword

similarity search and propose a secure multi-keyword

ranked search scheme (MRSS-ML). The index

construction of MRSS-ML is improved from the

scheme proposed in [14] which is based on SSE-2

inverted index data construction previously introduced

in [21]. In order to realize the higher security

requirements, keywords or document identifiers are

randomized by a physically unclonable function (PUF).

Due to the noisy influence of PUFs, the fuzzy extractor

is chosen to recover the secret keys. Moreover, a

similarity score table is constructed to achieve the

functionality of multi-keyword ranked search. Besides,

the order-preserving function [16] is improved to

protect the privacy of similarity between keywords and

documents. With these steps, a secure multi-keyword

ranked search scheme against memory leakage attack

(MRSS-ML) is achieved.

3 MRSS-ML Definition

3.1 Problem Formulation

3.1.1 System Model

There are three different entities in MRSS-ML as

illustrated in Figure 1: the data owner, the data user

and cloud server. The data owner intends to outsource

a document collection D to cloud server. He will first

extract keywords collection W' from D and construct a

keyword dictionary W with some inserted dummy

keywords. Next, he constructs an encrypted searchable

index I from collection D, and each document in D is

encrypted to generate one encrypted document

collection C. Finally, he sends the encrypted index I

and the collection C to cloud server. Data users are

entities that are authorized to access the documents of

the data owner. Cloud server stores the encrypted

searchable index and the collection of encrypted

documents. It has the responsibility to search over the

encrypted index and return the top-k most relevant

encrypted documents to users.

Trapdoor and secret keys

trapdoor

Top-K results

Cloud Server

Request
Data Owner Data User

Figure 1. System model of the MRSS-ML scheme

3.1.2 Security Model

In this sub-section, we introduce the stronger attack

model, called as full non-volatile memory attack model.

Definition 1. (Non-volatile Memory Attacker [22]):

Let S be secret information stored in data owner’s non-

volatile memory. Assume α as a function that: α(x) ≤ x,

x∈N, where N is the set of natural numbers. A α-

non-volatile memory attacker A can access the attack

oracle O that takes as adaptively chosen a

polynomial-size attack function g(•) and outputs g(S)

under the condition that the whole number of bits of

g(S) shall not exceed α(|S|).

Definition 2. (Full Non-volatile Memory Attack):

An attack model is called full non-volatile memory

attack if an attacker A meet the requirements of

Definition 1 and α = id defined in [22].

In the traditional attack model, an attacker is

assumed that he could not access any information

about the secret keys stored in non-volatile memory.

Obviously, this assumption is unreasonable in the

actual environment. For considerations of security, the

long-term secret keys should not be stored in non-

volatile memory any longer. Fortunately, the

physically unclonable function presented in [3] can be

used to generate the secret keys in real time, with

which the keys need not be stored. Accordingly, the

attacker would not be able to obtain any information

about the secret keys stored in non-volatile memory.

3.2 Notations and Preliminaries

3.2.1 Notations

In this paper, notations presented in Table 1 are used.

Table 1. Notation

D
The plaintext collection, denoted as a set of n

documents D = (D1, D2, …, Dn).

C
The encrypted document collection, stored in cloud

server and denoted as C = (C1, C2, …, Cn).

I The encrypted searchable index.

Ω The all possible keyword set extracted from D.

W' The distinct keyword set extracted from D.

W
The keyword dictionary with dummy keywords W =

(w1, w2, …, wm).
Q The interested search keywords which is the subset of W.

Tw The trapdoor for the search request Q.

3.2.2 Preliminaries

In this sub-section, background for the proposed

scheme follows next.

Physically unclonable functions. Willers et al. [23]

think that a key requirement for most security solutions

is to provide secure cryptographic key storage in a way

that will easily scale in the age of the Internet of

Things. They propose a microelectromechanical

systems (MEMS)-based PUF. Park et al. [24] propose

170 Journal of Internet Technology Volume 19 (2018) No.1

PUFSec, a new device fingerprint-based security

architecture which aims to design a computationally

lightweight security software system architecture to

trade-off dilemma between security enhancement and

computation overhead. PUFs will be widely used

gradually.

A Physically Unclonable Function (PUF) firstly

presented in [3] is a noisy function. As described in

[25], a PUF family P is composed of the pair of

algorithms Sample and Eval. The Sample takes the

security parameter as input and output the index

identifier idp of the PUF family, and the Eval takes a

stimulus s as input and output the response r.

Definition 3. (Physically Unclonable Functions,

PUFs): A pair Ρ = (Sample, Eval) is a family of the tri-

tuple (l, d, δ) PUFs if it meets the properties as follows:

‧ Unpredictability: For a set Φ of the stimulus-

response pair, it is difficult to predict the response r′

for a new random stimulus s′ in a small error range,

where Φ = {si, ri, 1≤i≤q} and s′, r′∉ Φ. With the

property, a PUF is called an (l, d, δ) PUF.

‧ Evaluation: The Eval takes security parameter 1λ,

idp and s as input, and it efficiently outputs the

corresponding r.

‧ Bounded Noise: For all stimulus s∈ {0, 1}l, the

Hamming distance d1,2 of any two responses r1 and

r2 should satisfy d1,2 <d when the algorithm Eval(1λ,

idp, s) is run twice, where d is a noise bound.

‧ Unclonability: Given a PUF, there is no efficient

technique, which is able to clone another PUF′ and

PUF′ = PUF.

‧ One-wayness: Given a PUF and a response r, the

corresponding stimulus s cannot be founded and

simultaneously satisfies the equation: Eval(1λ, idp, s)

= r.

Fuzzy extractor. From the above introduction, the

PUF can evaluate a physical stimulus and output

possibly different responses, which relies on a physical

architecture. To overcome the noisy drawback of PUF,

the properties of fuzzy extractor can be used to recover

the necessary secret information. The fuzzy extractor is

introduced in [4] as follows:

Definition 4. (Fuzzy Extractor, FE): An (l, d, δ)

fuzzy extractor is composed of two efficient algorithms

(Gen, Rep) as follows:

Gen: The algorithm takes an l-bit string w as input, it

outputs a random string st∈{0, 1}δ and an auxiliary

data ad∈{0, 1}*.

Rep: The reproduction algorithm takes an l-bit noisy

string w′ and the auxiliary data ad as inputs, it outputs

a δ-bit random string st.

Fuzzy Extractor has the following two properties.

‧ Correctness: Let dis be the Hamming distance of

two variables w and w′. The reproduction algorithm

FE.Rep(w′, ad)=st is realized if and only if dis ≤ d.

‧ Security: Let U is a uniform distribution with min-

entropy δ, the noisy string w as input is selected

from U, the output st would be distributed as U,

even if the auxiliary data string ad is revealed.

Order-preserving function. In order to preserve the

similarity score from a potential attacker, the order-

preserving function (OPF) is utilized to encode the

similarity score. The formalization of OPF is improved

from [16] as follows.

The order-preserving function f(x)=∑1≤i≤τ ai·h(x, i)+r,

where τ is the degree of the function, ai is a positive

coefficient, h(x, i) is a recursive computation, and r is a

random number that preserves the function from the

cloud server. h(x, i) is further defined as:

⎪⎩

⎪
⎨

⎧

>⋅+−⋅+

=

=

=

.1 if))1 ,(()1(

;1 if

;0 if 1

) ,(

ixixh

ix

i

ixh

βε

Here, both of β, ε are two constant numbers. In order

to guarantee the ranked results, the number r should

satisfy: r ∈ (0, 2
γ-1

), where γ is an integer. The

detailed definition, theorem and proof of OPF are

presented in [16].

4 The MRSS-ML Scheme

In this section, we present the formal definition of

MRSS-ML scheme and the detailed construction next.

4.1 Formal Definition

Definition 5. (Multi-keyword Ranked Search

Scheme against Memory Leakage, MRSS-ML): An

MRSS-ML scheme consists of five polynomial-time

algorithms MRSS-ML = (KeyGen, BuildIndex, TrapdoorGen,

Search, Decrypt), such that:

K←Keygen(1
λ
): is a probabilistic algorithm that is

run by data owner to setup the scheme. It takes a

security parameter λ, and returns a secret key K =

(PUF1, PUF2, PUF3) .

(I, C)←BuildIndex(K, D): is run by data owner to

generate indexes and encrypted document set. It takes a

secret key K and a document collection D as inputs,

and returns an index I and an encrypted document set C.

Tw←TrapdoorGen(K, Q): is run by user to

generate a trapdoor to search keywords that is a subset

of dictionary. It takes a secret key K and interested

keywords Q as inputs, and returns a trapdoor Tw
.

IDw←Search(I, Tw): is run by cloud server to

search for documents in D that contains words Q. It

takes an index I and a trapdoor Tw as inputs, and returns

IDw, the set of top-k most relevant ranked document

identifiers.

Dw←Decrypt(K, IDw): is run by user to decrypt the

set of the top-k most relevant ranked encrypted

documents that contain words Q. It takes a secret key K

and the top-k most relevant ranked document identifier

set IDw as inputs, and returns the top-k most relevant

ranked document set Dw that contains search keywords Q.

A Secure Multi-keyword Ranked Search over Encrypted Cloud Data against Memory Leakage Attack 171

Keygen(1
λ
):

1. Choose a (p+ log
 2
n, d1, δ1) PUF1, a (t, d2, δ2) PUF2 and a (t, d3, δ3) PUF3.

2. Output a secret key K = (PUF1, PUF2, PUF3).

BuildIndex(K, D):

1. Initialization:

(a) scan D and build W', the set of distinct words in D.

(b) construct a new dictionary W containing W' and several inserted dummy keywords.

(c) for each word wi ∈ W, build D(wi).

2. Build look-up table T:

(a) for wi ∈ W and j∈ [1, n], compute uti,j = PUF1(wi||j) and (rti,j, adti,j)←FE1.Gen(uti,j).

(b) for wi ∈ W and Dj ∈ D, compute usi,j = PUF3(id(Di,j)), compute idci,j = Enc(usi,j, idi,j), where idci,j

 is the jth encrypted identifier in D(wi).

(c) for wi ∈ W and j ∈ [1, |D(wi)|], set T[rti,j] = idci,j. If v < �, �-v random strings with m1 bits are

 assigned in T for exactly m times, and the addresses are set to random values.

3. Generate an auxiliary query table T':

(a) for i ∈ [1, m] and j ∈ [1, n], T'[wi] = adti,j.

(b) for i ∈ [m+1, |Ω|] and j ∈ [1, n], T'[wi] = adrti,j, where adrti,j is a randomly generated string with

 the same length as adti,j.

4. Build score table Δ:

(a) for Dj ∈ D and wi ∈ W, compute the similarity score Sj,i = Score(Dj, wi), then compute CSj,i = f(Sj,i),

 where f(•) is an order-preserving function.

(b) for Dj ∈ D and wi ∈ W, set Δ[idcj,i] = CSj,i.

5. Generate encrypted document Cj:

for Dj∈ D, compute ucj=PUF2(id(Dj)) and (rcj, adcj)←FE2.Gen(ucj), then Cj= (Enc(rcj, Dj), adcj).

6. Output index I = (T, Δ) and encrypted document collection C = (C1, C2, …, Cn).

TrapdoorGen(K, Q):

1. For wi ∈ Q and j ∈ [1, n], compute ûti,j = PUF1(wi||j) and rti,j = FE1.Rep(ûti,j, adti,j), where adti,j is an

 auxiliary data stored in T'.

2. Output Tw = {Twi
, 1≤i≤q}, where Twi

 = (rti,1, rti,2, …, rti,n).

Search(I, Tw):

1. Traverse the look-up table T according to Tw: for 1≤i≤q and j ∈ [1, n], if T[rti,j] ≠ ,⊥ the value idci,j is

 inserted into the encrypted identifier set IDC matching the searched keywords.

2. Traverse the score table Δ according to IDC: for idcj,i ∈ IDC, if Δ[idcj,i] ≠ ⊥, compute VSj =∑1≤i≤qCSj,i.

3. Output the top-k most relevant document identifier set IDCw = {id(Dj), 1≤j≤k}.

Decrypt(K, IDw):

1. Server returns the corresponding encrypted document set Cw according to IDCw.

2. For each Dj, j ∈ [1, k], user computes ucj = PUF2(id(Dj)) and rcj = FE2.Rep(ucj, adcj).

3. User computes Dwj
 = Dec(rcj, Cwj

), j ∈ [1, k].

4. Output the top-k most relevant document set Dw = (Dw1
, Dw2

, …, Dwk
) containing the search keywords.

4.2 The MRSS-ML Construction

The MRSS-ML scheme improves the MLR-SSE

scheme [5] to achieve multi-keyword ranked search. In

this sub-section, we detail the concrete construction of

MRSS-ML scheme which is illustrated in Figure 2.

Figure 2. The construction of

In MRSS-ML, a document collection D is associated

with an encrypted index I. The index I consists of two

tables. The first one is the look-up table T. Before

construction, a keyword dictionary W with inserted

dummy keywords and D(wi) for each word wi ∈ W

are built. For i ∈ [1, n] and wi ∈ W, let v = ∑|D(wi)|

and u = max(|Di|), then ṽ = n·u, where |Di| denote the

number of keywords extracted from the document Di.

MRSS-ML scheme

For wi ∈ W and j∈ [1, n], we use a physically

unclonable function (PUF1) to randomize the

keywords. Next, two groups of data are generated by

the generation algorithm of fuzzy extractor (FE1.Gen).

The first one rti,j is a key used to randomize the address

of tuples in T. The other adti,j is an auxiliary data. For i

∈ [1, m] and j ∈ [1, n], the adti,j is stored in another

table T' stored in data owner’s non-volatile memory.

172 Journal of Internet Technology Volume 19 (2018) No.1

Let Ω be the set of all possible keywords extracted

from D, and let |Ω| be the number of all possible

keywords. For i ∈ [m+1, |Ω|] and j ∈ [1, n], the

randomly generated strings adrti,j are inserted in T'.

The auxiliary data adti,j is used to recover the key rti,j in

the process of trapdoor generation. Next, we use

another PUF3 to calculate the random string usi,j of the

document identifiers containing the keyword wi. Then,

the symmetric encryption is employed to encrypt the

document identifiers, and the symmetric key is usi,j. The

encrypted identifiers containing the keyword wi are

inserted in the entries of the randomized address in T,

and the remaining entries of T are set to random strings.

The other table is the similarity score table Δ. We

utilize the TF-IDF method to compute the similarity

score of the document Dj and the keyword wi. The

score is encoded by an order-preserving function

improved from [16]. The sum of similarity scores is

used as the metric to rank the queried results. Next, the

addresses of Δ are randomized by the encrypted

document identifiers, and the encoded scores are

inserted in these entries of Δ. Another PUF2 is used to

generate the random string of the identifier of the

document Dj. The generation algorithm FE2.Gen of

fuzzy extractor is called to generate two groups of data.

The first one rci,j is used as a key to encrypt Dj, and

adci,j is used as an auxiliary data to recover the key rci,j.

The data owner stores the index I on the cloud server

with the encrypted document collection C. As one user

is authorized to retrieve the documents that contain the

keyword wi (wi ∈ Q, where Q is a set of the interested

searched keywords), he computes the trapdoor

encryption key by calling the function PUF1 and the

reproduction algorithm FE1.Rep of fuzzy extractor.

Once receiving the trapdoor from user, the server

traverses the look-up table T to obtain a candidate

document identifier set IDC. Then, the server traverses

Δ and computes the sum of the encoded score. Finally,

the user uses PUF2 and FE2.Rep to recover the secret

keys which are used to decrypt the encrypted top-k

most relevant documents.

5 Security and Performance Analysis

The security and performance analysis of MRSS-

ML scheme are given in this section.

5.1 The Security Analysis

From the previous description, several dummy

keywords are inserted into the index, which is used to

prevent keyword frequency analysis from the potential

attackers. The document collection is encrypted by

symmetric encryption algorithm, since the attackers

cannot learn anything about documents if the

encryption algorithm is secure. We mainly focus on

analyzing the security of index, trapdoor and search

pattern as follows.

Theorem 1. The scheme MRSS-ML is semantically

secure against full non-volatile memory attack if the

PUFs used in the proposed scheme satisfy the

definition 3 (described in section 3.2.2A).

Proof of index security. In the proposed scheme, the

index consists of a look-up table T and a score table Δ.

In order to hide the number of keywords in dictionary

and document identifiers containing the keyword wi,

the entries of T are equal to the number of keywords

extracted from the document Di. Additionally, the

addresses of these entries are set to random strings.

Besides, the entries of Δ are processed in the similar

way. Thanks to the unpredictability of PUFs and the

security of fuzzy extractor (FE), the addresses of T

and Δ cannot be computed by a full non-volatile

memory attacker. Furthermore, the similarity scores

are encoded with an order-preserving function.

Assume that an attacker has selected n encoded

scores for the same input Sj,i according to the

equation f(x)=∑1≤i≤τ ai·h(x, i)+r, after that, the attacker

constructs n equations. However, the attacker cannot

break the order-preserving function, since n

equations have n+1 variables. Therefore, the

confidentiality of similarity score is protected.

Proof of trapdoor unlinkability. Assume an attacker

independently chooses a PUF′ and a FE′, and obtains

the auxiliary data stored in a non-volatile memory. The

attacker can compute ut′i,j = PUF′(wi||j) and rt′i,j =

FE′.Rep(ut′i,j, adti,j). However, because of the

unpredictability of PUFs and the security of FE, the

trapdoor T′w = {T′wi
, 1≤i≤q}, where T′wi

 = (rt′i,1, rt′i,2,…,

rt′i,n) is different from the real one Tw described in Figure

2. Thus, the keyword privacy and the trapdoor

unlinkability are reinforced.

Proof of search security. Suppose that an attacker

monitors the user's search process in real time, and he

can get the input keywords. Then, the attacker chooses

two PUF (PUF″ and PUF‴), an FE″, and a symmetric

encryption algorithm Enc, and he is able to get the

auxiliary data stored in a non-volatile memory.

Regardless of whether the keyword wi appears or not,

the attacker can generate a new trapdoor as the

following process: compute ut″i,j = PUF″(wi||j) and

rt″i,j = FE″.Rep(ut″i,j, adti,j), then T″w = {T″wi
, 1≤i≤q},

where T″wi
 =(rt″i,1, rt″i,2, …, rt″i,n). For 1≤i≤q and j ∈

[1, n], the attacker also can set T[rt″i,j], and for id(Dj)

∈ ID and wi ∈ Q, compute us‴ j = PUF‴ (id(Dj))

and idc‴ i,j = Enc(us‴ i,j, idi,j), then set Δ[idc‴ i,j].

Obviously, if the unpredictability of PUFs and the

security of FE can be guaranteed, the new trapdoor

T″w will not be equal to the real one Tw described in

Figure 2 and the T[rt″i,j] and Δ[idc‴ i,j] will always be

⊥. Therefore, the attacker cannot obtain any information

about the documents and keywords even if the secret

keys stored in non-volatile memory are given.

A Secure Multi-keyword Ranked Search over Encrypted Cloud Data against Memory Leakage Attack 173

5.2 Performance Analysis

In this sub-section, we analyze the performance of

the proposed MRSS-ML scheme. From the introduction

in [3], the efficiency of PUFs is almost equal to hash

function. Accordingly, we use a hash function instead

of PUF to evaluate the performance of MRSS-ML

scheme. Experiments are coded using Java on PC with

Intel core i5-M480 2.67GHz Processor, 6 GB memory,

1GB AMD Radeon HD 6400M graphics card, running

Win7 (64 bit) system. The performance of the

proposed scheme is compared with the MRSE scheme

[6], meanwhile the overhead of index construction,

trapdoor generation and search will be compared and

analyzed next.

5.2.1 Storage Overhead

From the above detailed description of the MRSS-

ML scheme in section 4, we can see that the size of the

index is mainly determined by the size of document

collection and the keyword dictionary. As shown in

Table 2, the index sizes of two schemes grow linearly

with the number of keywords. Because the look-up

table and similarity score table are built in index

construction, the MRSS-ML scheme takes up more

storage space.

Table 2. Size of index with n=1000

size of dictionary 1000 2000 3000 4000 5000

MRSE(MB) 15.25 30.5 45.75 61 76.25

MRSS-ML(MB) 34.33 68.66 102.99 137.33 171.66

In MRSE scheme, the trapdoor of queried keywords

is generated according to the keywords dictionary. As

illustrated in Table 3, the size of trapdoor in MRSE

scheme grows linearly with the number of keywords.

However, the size of trapdoor in the MRSS-ML

scheme is not affected. The reason lies in that the

trapdoor is calculated only for queried keywords.

Table 3. Size of trapdoor with n=1000, q=20

size of dictionary 2000 4000 6000 8000 10000

MRSE(KB) 15.63 31.25 46.88 62.5 78.13

MRSS-ML(KB) 0.20 0.20 0.20 0.20 0.20

5.2.2 Computing Overhead

Index construction. In the MRSS-ML scheme, index

construction consists of two steps. The first one is to

build a look-up table. Another one is the construction

of similarity score table. Likewise, in MRSE scheme,

the index construction includes two processes. The

former one is generating a data vector according to the

keyword dictionary, while the latter is encrypting a set

of data vectors. Obviously, the index construction

relies on the keyword dictionary extracted from the

document collection. Therefore, the time of building

whole index is related to the number of documents and

keywords. Figure 3(a) shows that given the same

dictionary (m=2000), the time overhead of index

construction for the two schemes increases linearly

with the increasing number of documents. Figure 3(b)

demonstrates that, given the same number of files

(n=1000), the time overhead of index construction of

MRSE increases exponentially. It can be seen that the

time overhead of index construction of MRSS-ML

scheme is better in both situations.

Trapdoor generation. Through theoretic analysis, the

efficiency of trapdoor generation will be better than

index construction. Figure 4(a) shows that the time of

generating a trapdoor in MRSE increases dramatically

as the number of keywords increases. Figure 4(b)

demonstrates that the efficiency of trapdoor generation

in MRSS-ML scheme is about 60 times better than that

of MRSE scheme. In MRSE, the efficiency of

generating a trapdoor is mainly affected by the large

scale of matrices. In MRSS-ML, the time of trapdoor

generation is determined by the number of queried

keywords. Besides, the efficiency of PUFs and fuzzy

extractor determines that the proposed scheme is better

than MRSE.

Search. In search process, the cloud server is

responsible for computing and ranking similarity

174 Journal of Internet Technology Volume 19 (2018) No.1

scores. Figure 5 shows that the search overhead is

mainly determined by the size of documents collected

and the number of keywords in the dictionary. As

demonstrated in the figures, the growth of search time

of MRSE is obviously higher than that of MRSS-ML.

It can be predicted that the search time of MRSE will

be more than MRSS-ML when the size of documents

and keyword dictionary is large.

6 Conclusion and Future Work

In this paper, we present a novel multi-keyword

ranked search scheme that resists to memory leakage

attack (MRSS-ML). Like the MLR-SSE scheme, the

look-up table is built to retrieve the candidate

document identifiers containing the interested

keywords. Different from the MLR-SSE, the score

table is constructed to achieve multi-keyword ranked

search, and a PUF is used to randomize the addresses

of the score table. To further enhance the security of

the proposed scheme, we select an order-preserving

function to encode the similarity scores. Considering

the noisy defects of PUFs, the fuzzy extractor is chosen

to recover the secret keys. From the above performance

analysis, the proposed scheme is efficient. At the same

time, it can achieve higher security requirements

against memory leakage attack.

In fact, there are many other challenging problems

in SSE schemes. Most of SSE schemes mainly

consider the security threats from the cloud server.

Actually, there are many security challenges in a multi-

user scheme. Fine-grained access authorization and the

revocation of the user are largest ones. As future work,

we will suggest and improve the SSE scheme to handle

these issues, as well to explore supporting other multi-

keyword functionalities over encrypted data, e.g.,

multi-owner setting, as also integrity check of rank

order in search results.

Acknowledgment

This work was supported by the Natural Science

Foundation of China (No. 61602118, No. 61572010

and No. 61472074), Fujian Normal University

Innovative Research Team (No.IRTL1207), Natural

Science Foundation of Fujian Province (No. 2015J01240,

No. 2017J01738), Science and Technology Projects of

Educational Office of Fujian Province (No. JK2014009),

and Fuzhou Science and Technology Plan Project (No.

2014-G-80).

A Secure Multi-keyword Ranked Search over Encrypted Cloud Data against Memory Leakage Attack 175

References

[1] D. Boneh, G. D. Crescenzo, R. Ostrovsky, G. Persiano,

Public Key Encryption with Keyword Search, International

Conference on the Theory and Applications of Cryptographic

Techniques, Interlaken, Switzerland, 2004, pp. 506-522.

[2] D. X. Song, D. Wagner, A. Perrig, Practical Techniques for

Searches on Encrypted Data, IEEE Symposium on Security

and Privacy, Berkeley, California, 2000, pp. 44-55.

[3] S. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical

One-way Functions, Science, Vol. 297, No. 5589, pp. 2026-

2030, September, 2002.

[4] Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy

Extractors: How to Generate Strong Keys from Biometrics

and Other Noisy Data, SIAM Journal on Computing, Vol. 38,

No. 1, pp. 97-139, March, 2008.

[5] S. Dai, H. Li, F. Zhang, Memory Leakage-resilient

Searchable Symmetric Encryption, Future Generation

Computer Systems, Vol. 62, pp. 76-84, September, 2016.

[6] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, Privacy-Preserving

Multi-Keyword Ranked Search over Encrypted Cloud Data,

IEEE Transactions on Parallel and Distributed Systems, Vol.

25, No. 1, pp. 222-233, January, 2014.

[7] L. Chen, L. Qiu, K. C. Li, W. Shi, N. Zhang, DMRS: An

efficient Dynamic Multi-keyword Ranked Search Over

Encrypted Cloud Data, Soft Computing, Vol. 21, No. 16, pp.

4829-4841, August, 2017.

[8] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, W. Lou, Fuzzy

Keyword Search over Encrypted Data in Cloud Computing,

The 29th Conference on Computer Communications, San

Diego, CA, 2010, pp. 1-5.

[9] B. Wang, S. Yu, W. Lou, Y. T. Hou, Privacy-preserving

Multi-keyword Fuzzy Search Over Encrypted Data in the

Cloud, The 33rd Conference on Computer Communications,

Toronto, Canada, 2014, pp. 2112-2120.

[10] C. Wang, K. Ren, S. Yu, K. M. R. Urs, Achieving Usable and

Privacy-assured Similarity Search Over Outsourced Cloud

Data, The 31st Conference on Computer Communications,

Orlando, FL, 2012, pp. 451-459.

[11] Z. Fu, J. Shu, J. Wang, Y. Liu, S. Lee, Privacy-preserving

Smart Similarity Search Based on Simhash over Encrypted

Data in Cloud Computing, Journal of Internet Technology,

Vol. 16, No. 3, pp. 453-460, May, 2015.

[12] S. Gajek, Dynamic Symmetric Searchable Encryption from

Constrained Functional Encryption, The Cryptographers’

Track at the RSA Conference, San Diego, CA, 2016, pp. 75-

89.

[13] L. Yang, Q. Zheng, X. Fan, RSPP: A Reliable, Searchable

and Privacy-preserving E-Healthcare System for Cloud-

assisted Body Area Networks, Proceedings of the 36th

Conference on Computer Communications, Atlanta, GA,

2017.

[14] M. Strizhov, I. Ray, Secure Multi-keyword Similarity Search

over Encrypted Cloud Data Supporting Efficient Multi-user

Setup, Transactions on Data Privacy, Vol. 9, No. 2, pp. 131-

159, August, 2016.

[15] R. Li, Z. Xu, W. Kang, K. Yow, C. Xu, Efficient Multi-

keyword Ranked Query over Encrypted Data in Cloud

Computing, Future Generation Computer Systems, Vol. 30,

No. 1, pp. 179-190, January, 2014.

[16] W. Zhang, Y. Lin, S. Xiao, J. Wu, S. Zhou, Privacy

Preserving Ranked Multi-keyword Search for Multiple Data

Owners in Cloud Computing, IEEE Transactions on

Computers, Vol. 65, No. 5, pp. 1566-1577, May, 2016.

[17] J. Wang, X. Chen, J. Li, J. Zhao, J. Shen, Towards Achieving

Flexible and Verifiable Search for Outsourced Database in

Cloud Computing, Future Generation Computer Systems, Vol.

67, pp. 266-275, February, 2017.

[18] W. Sun, X. Liu, W. Lou, Y. T. Hou, H. Li, Catch You If You

Lie to Me: Efficient Verifiable Conjunctive Keyword Search

Over Large Dynamic Encrypted Cloud Data, Proceedings of

the 34th Conference on Computer Communications, Hong

Kong, China, 2015, pp. 2110-2118.

[19] X. Wu, Z. Fu, X. Sun, Text-Based Searchable Encryption in

Cloud: A Survey, Journal of Internet Technology, Vol. 18,

No. 1, pp. 207-213, January, 2017.

[20] G. S. Poh, J. J. Chin, W. C. Yau, K. K. R. Choo, M. S.

Mohamad, Searchable Symmetric Encryption: Designs and

Challenges, ACM Computing Surveys, Vol. 50, No. 3, Article

40, August, 2017.

[21] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable

Symmetric Encryption: Improved Definitions and Efficient

Constructions, 13th ACM Conference on Computer and

Communications Security, Alexandria, VA, 2006, pp. 79-88.

[22] F. Armknecht, R. Maes, A. R. Sadeghi, B. Sunar, P. Tuyls,

Memory Leakage Resilient Encryption Based on Physically

Unclonable Functions, Proceedings of the 15th Conference

on the Theory and Application of Cryptology and Information

Security, Tokyo, Japan, 2009, pp. 685-702.

[23] O. Willers, C. Huth, J. Guajardo, H. Seidel, MEMS

Gyroscopes As Physical Unclonable Functions, 23rd ACM

Conference on Computer and Communications Security, New

York, NY, 2016, pp. 591-602.

[24] S. Y. Park, S. Lim, D. Jeong, J. Lee, J. S. Yang, H. Lee,

PUFSec: Device Fingerprint-based Security Architecture for

Internet of Things, Proceedings of the 36th Conference on

Computer Communications, Athlanta, GA, 2017.

[25] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser,

Physically Uncloneable Functions in the Universal

Composition Framework, The 31st International Cryptology

Conference, Santa Barbara, CA, 2011, pp. 51-70.

Biographies

Lanxiang Chen received the M.S.

and Ph.D. Degrees in Computer

Architecture from Huazhong

University of Science and Technology

in China. She is currently an associate

professor in Fujian Normal University.

She is a member of the Computer

176 Journal of Internet Technology Volume 19 (2018) No.1

Society of China. Her research interests include big

data security, cloud computing and cloud storage

security etc.

Linbing Qiu is M.S. candidate at

Fujian Normal University. His research

interests include cloud storage and

information security.

Kuan-Ching Li is a Professor at the

Providence University, Taiwan, and a

Chair Professor at Hubei University of

Education, China. Dr. Li is a recipient

of awards and funding support from a

number of agencies and industrial

companies, as also received guest and

distinguished chair professorships from universities in

China and other countries. He has been actively

involved in many major conferences and workshops in

program/general/steering conference chairman

positions and as a program committee member, and has

organized numerous conferences related to high-

performance computing and computational science and

engineering. He is editor of several technical

professional books published by CRC Press, McGraw-

Hill, IGI Global and Springer. His topics of interest

include Cloud and GPU computing and Big Data. He is

a senior member of the IEEE and a Fellow of the IET.

Shuming Zhou graduated in 1996

from the Department of Computer and

Applied Mathematics, Hubei Institute

for Nationalities. He received his M.S.

and Ph.D. degrees from Jiangxi

Normal University in 2002 and Xiamen

University in 2005, respectively. He is

currently a Professor and Doctoral Supervisor in Fujian

Normal University of China. His research interests

include Group and Graph theory, Complex networks,

Network computing and Fault diagnosis. He has

published over 50 papers in refereed international

journals on these topics since 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

