
A Tool for Access Control Policy Validation 157

A Tool for Access Control Policy Validation

Muhammad Aqib, Riaz Ahmed Shaikh*

Computer Science Department, Faculty of Computing and Information Technology,

King Abdulaziz University, Saudi Arabia

aqib.qazi@gmail.com, rashaikh@kau.edu.sa

*Corresponding Author: Riaz Ahmed Shaikh; E-mail: rashaikh@kau.edu.sa

DOI: 10.3966/160792642018011901015

Abstract

Inconsistency in access control policies exists when at

least two rules present in the policy set lead to the

contradictory decisions. It makes difficult for the system

to decide which rule is applicable to the current scenario

and hence make the system vulnerable to the unauthorized

use. Various inconsistency detection methods have been

proposed by researchers. However, those suffered from

various limitations e.g., inefficient handling of numeric

attributes, Boolean expressions etc. In this article, we

propose a new algorithm that detects the inconsistencies

in the policies using decision trees. For a proof of concept,

we have developed a software tool that proves its

effectiveness. Also, complexity analysis and qualitative

comparison of the proposed algorithm is presented in the

paper.

Keywords: Access control, Inconsistency, Policy validation,

Security, XML

1 Introduction

Security of the enterprise applications is a critical

issue. For this reason, different security mechanisms

(such as access control) are enforced to restrict the

users of the enterprise applications from an unauthorized

use. In order to achieve this goal, the organization

defines policies that are implemented by the administrator

by defining rules in access control systems. In order to

ensure that the rules do not contain any errors such as

inconsistencies, enterprises adopt policy validation

mechanisms.

Policy validation is not a trivial task. Many researchers

[2-9] have worked on this issue and adopted various

techniques to detect inconsistencies in the access

policies. For example, Shaikh et al. [2] have used data

classification techniques to detect inconsistencies in

access control policies. Authors in [4-6] have used

model checking technique and tools like Alloy and

SPIN for this purpose. Many other approaches are also

used in [7-9]. However, most of the existing solutions

suffered from various limitations. For example, some

solutions are only limited to discrete attributes. Some

schemes are inefficient in handling continuous

attributes and Boolean expressions. Some schemes are

only limited to static rules etc.

In this paper, we have presented an algorithm based

approach to detect inconsistencies in access control

policies. Our contribution is follows:

‧ The proposed algorithm can efficiently handle both

continuous and distribute attributes.

‧ The proposed algorithm can efficiently handle

Boolean expression.

‧ The proposed algorithm can be used with static and

dynamic policies.

‧ For the proof-of-concept we have developed “ACPs

Validation Suite” that proves the effectiveness of the

proposed algorithm.

‧ Qualitative comparison of the proposed algorithms

with 12 state-of-the-art schemes is presented.

The rest of the paper is organized as follows. Section

2 defines the inconsistency and also the related

concepts. Section 3 contains a description of the proposed

algorithm whereas the algorithm implementation details

are given in Section 4. Complexity analysis of the

proposed algorithm is given in Section 5. Section 6

describes related work and qualitative comparison.

Final section present conclusion and future work.

2 Concepts and Definitions

Inconsistency in the policy set exists when any two

rules in that policy set lead to the contradictory

outcomes. The rules defined by the administrators

consist of different attribute values and the values of

these attributes lead them to some decision. In the

following section, we will discuss in detail about these

attributes.

2.1 What is Inconsistency?

To define a rule in a policy set, various attributes are

used to define different entities like user, resources,

action, context, category or decision etc. In practice, a

rule must contain at least four attributes (Subject,

Object, Action, and Decision). In addition to those, a

policy administrator can define any finite number of

158 Journal of Internet Technology Volume 19 (2018) No.1

contextual attributes (e.g., day, time, month, age etc.).

Among all these attributes, the decision attribute

defines the class to which the specific rule belongs.

There may be different classes like permit, deny and

undefined. These classes define the kind of permission

granted to the user, e.g. access granted to a specific

user to access specific resources under certain

conditions or revoked or it is undefined etc.

Let
1 2 3

{ , , , ..., } ,
n

S s s s s n N= ∈ is a set of subjects

containing n subjects,
1 2 3

{ , , , ..., }
m

O o o o o m N= ∈ is a

set of objects containing m objects,
1 2 3 1

{ , , , ..., }C c c c c=

l N∈ is a set of contexts containing l contexts, and

1 2 3
{ , , , ..., }

k
A a a a a k N= ∈ is a set of actions

containing k actions. Let { , , }D permit deny undefined=

be the set of decision attribute. An access control

policy is considered to be a four-tuple rule

(, , , }s o a c d→ where , ,s S o O∈ ∈ ,a a∈ c C∈ and

d D∈ . If R is the set of rules, then for any two rules

i
r and

j
r R∈ such that i j≠ , if

i
r and

j
r have same

, ,s o a and c attributes values and they have contradictory

decisions i.e.
i x
r d→ and ,

j y
r d→ x y≠ then the

policy set is said to be inconsistent.

2.2 Example of Inconsistency

Let us consider the example of two employees

(Manager and Cashier) working in a bank and they

need to access some records to perform different tasks.

Only the Manager has the right to perform any kind of

operation (e.g. update, delete etc.) on the customer’s

records where the Cashier can only view the customer

details to perform some transactions. The bank

administration has reserved two days (Monday and

Tuesday) to open new accounts. In case of any change

in customer information, they can visit the bank on

Wednesday and Thursday. Friday is the last working

day of the week; the management will review the

records of the customers and that day they can

delete/block the account of inactive customer accounts.

Table 1, shows the various rules defined to perform

different operations on the record file by different users.

Both, Manager and Cashier can view the records in

that file throughout the week, but only Manager can

add new customers in the record file. In addition, he

can update the customer information and can also

perform the delete operation on inactive accounts. It is

clear from the above-mentioned rules that there is no

inconsistency. Let us assume that the Manager

delegates his delete record rights to the cashier. Then

the rule 9 will be added in the rule set as shown in

Table 2.

Now according to the new rules defined in Table 2,

Cashier is allowed to delete customer records on

Friday, which contradicts with the rule 8, which states

that Cashier cannot perform delete operation on

customer records. This shows that the rules defined in

this policy are inconsistent.

2.3 What is Redundancy?

When defining a rule in a policy set, it might happen

that the administrator may define multiple rules to

address the same scenario. As we defined in section 2.1,

R is the set of rules and any two rules
i
r and

j
r R∈

such that i j≠ . If
i
r and

j
r have same , ,s o a attributes

values. And let
i

C is the set of contextual attributes

values for rule
i
r and

j
C is the set of contextual

attributes values for rule
j
r and

i j
C C φ∩ ≠ . Now if

both the rules have same decisions i.e.
i x
r d→ and

,
j y
r d→ x y= then these kind of rules are said to be

redundant rule instead of an inconsistent rule. There

A Tool for Access Control Policy Validation 159

are mechanisms available to address this issue in

access control policies as discussed in [26].

Algorithm proposed in next section merge all the

redundant rules in one single rule. For example, we

consider the rule 8 and 9 presented in Table 2. If the

decision attribute value of both the rules is same i.e.

either permitted or denied for both of them, then these

rules are called redundant rules with overlapping

contextual attribute values i.e. the value of the variable

“Day”. So our algorithm will consider these two rules

as one single rule with the values of variable “Day” as

“Mon-Fri”.

3 Inconsistency Detection Algorithm

In this section, we will discuss the proposed

algorithm in detail. This algorithm takes the access

control policies in the form of a decision tree. As

discussed above, the rule is defined in the form of four

tuples, which includes subject, object, action and

context i.e. (s,o,a,c)→d. The validation process in this

algorithm is completed in two phases. In the first phase,

the algorithm takes a decision tree as an input and

divides it into sub-trees based upon the number of

decision attribute values. In the second phase,

algorithm takes sub-trees as an input and compares

them recursively to detect inconsistencies.

3.1 Decision Tree Hierarchy

In the decision tree, the root node (at level 1)

contains decision attribute nodes (at level 2) as child

nodes which in turn contain action attribute nodes (at

level 3) as their children. This hierarchy continues as

action attribute nodes contain object attribute nodes (at

level 4) and object nodes contain subject attribute

nodes (at level 5) as child nodes. Finally, subject nodes

contain contextual attribute nodes (at level 6) as the

leaf nodes.

3.2 Inconsistencies Detection Process

As discussed above, the proposed algorithm consists

of two parts that are clearly shown in Figure 1. In the

following paragraphs, we will briefly describe the

working of this algorithm.

Step 1. In this step, the main tree will be divided into

the sub-trees equal to the number of decision attribute-

values. For this purpose, it will count the number of

decision attribute nodes that are the children of the root

node (Part A, Line: 3). If there is only one decision

attribute node in the children node list of the root node

(Part A, Line: 4), then the algorithm will stop and it

will display no inconsistency found message (Part A,

Lines: 18, 19). In another case, the main tree will be

divided into the sub-trees equal to the number of

decision attribute-values (Part A, Lines: 5-15).

Suppose there are two decision attribute-values, permit

and deny as shown in a sample hierarchy tree in Figure

2, then in that case, the main tree will be divided into

the two sub-trees where all the policies with category

attribute value “permit” will be present in the first tree

having same category attribute value as the root node

of the tree. Similarly, all the other rules will be present

in the second tree with category attribute value “deny”

as the root node. Resulting sub-trees with decision

attribute as root nodes are shown in the Figure 3.

Step 2. After having separate trees for each decision

node as shown in the Figure 1, our algorithm will start

comparing two sub-trees using the CompareNodes

function (Part A, Line: 16). It will compare only if both

of the trees are not null (Part B, Line: 1). After that, it

160 Journal of Internet Technology Volume 19 (2018) No.1

will get the child nodes of the first tree and will start

comparing it with the child nodes of the second tree

(Part B, Lines: 2, 3). If the child node type in both trees

is action and the node values are also same, it will pick

those nodes and will call the CompareNodes function

again (Part B, Lines: 12-14). In Figure 1, the child

node of decision attribute node is action node and its

value “Read” is same in both sub-trees. Now the action

node will become the root node of both the trees

passed to the CompareNodes function as shown in

Figure 4.

Again as both the trees shown in Figure 4 are not

null (Part B, Line: 1), it will get the child nodes of the

root node (action node is root node here) and the object

attribute nodes are the child nodes at this step (Part B,

Lines: 2, 3). Now it will compare the values of object

attribute and will call the CompareNodes function

again if the object attribute has the same values in both

trees (Part B, Lines: 12-14). As shown in the Figure 4,

object nodes having “File1” are same in both the trees.

Now new sub-trees will be created having them as root

nodes. The Figure 5 shows the resulting trees passed to

the CompareNodes function in result of this

comparison.

The CompareNodes function will compare the trees

shown in Figure 5 where object attribute node is the

root node. It is clear that the child node type is subject

node and “Joe” is the same attribute value in both the

trees. So CompareNodes function will be called again

and this time the subject attribute node will be the root

node in both the sub-trees passed as parameters. The

Figure 6 shows the resulting sub-trees with subject

attribute nodes as the root nodes.

These trees will be passed to the CompareNodes

function and they have contextual attributes as their

child nodes. So this time the CompareNodes function

will not be called again and contextual attributes will

be compared in step 3 of the algorithm.

Step 3. As mentioned above, if the child node type in

both the trees is context node, the CompareNodes

A Tool for Access Control Policy Validation 161

function will not be called because these are the leaf

nodes of the decision tree. It also indicates that all the

other attributes are same. Now, it will start comparing

the contextual attribute values (Part B, Lines: 4, 5). If

the contextual attributes have the same values, it means

both these rules are same. In Figure 6, we can see that

there is a contradiction in time attribute. The user “Joe”

is permitted to access the resource on Monday from

0800 to 1600 but on the same day, he cannot access the

resource from 1400 to 1600. So it will get all the parent

nodes of those contextual attributes to get those rules

(Part B, Lines: 6-8) as shown in Figure 7. Here all

attribute-values of both the rules are same, it means

they are inconsistent and hence they will be stored in

the list of inconsistent rules (Part B, Line: 9). The

Same process will be repeated until all the sub-trees

generated during step 1 are compared with each other.

4 Algorithm Implementation

We have implemented our proposed algorithm and

have developed a tool named “ACPs Validation Suite”,

which takes the access control policies, defined in

XML file as input. By implementing the proposed

algorithm, it performs the validation process and

displays the inconsistent rules along with their IDs. In

Figure 8, we have shown an XML file that contains

twenty-three rules to access different resources by

different users. As we already have mentioned that we

have considered the four-tuple rules for these policies.

Each rule is defined as an element in the XML file and

the attributes of this element represent the attributes of

policy rules. The id attribute defines the rule’s identity.

In this example, we have seven distinct subject (user1

till user7), eight objects (File1 till File8), and three

actions (read, write, and delete) values. Other three

attributes (time, age and month) are contextual

attributes. Time and age are continuous attributes,

162 Journal of Internet Technology Volume 19 (2018) No.1

whereas the others are discrete attributes. Figure 9

shows the ACPs Validation Suite, where the upper half

of the screen shows the contents of the input XML file

and the lower half shows the rules with contradictory

decisions. This figure shows that tool has detected all

five inconsistent rules that were present in the XML

file.

A Tool for Access Control Policy Validation 163

4.1 Results

To evaluate the efficiency of the proposed algorithm,

we have developed a simple tool that randomly

generates large policy datasets in XML format. By

using this tool, we have generated ten access control

policy datasets. Our experiments were performed on

the Intel Core i5 CPU 2.40 GHz with 6 GB RAM

running on Windows 7 (64-bit operating system).

In Table 3, we have presented the details of each

dataset that includes the information about number of

rules and number of inconsistencies detected by ACPs

Validation Suite. Figure 10 and Figure 11 show the

time consumption in milliseconds and total space

consumption in bytes by running the tool for each

policy set respectively.

5 Complexity Analysis

The complexity of the proposed algorithm depends

upon the number of distinct attribute values for

different attributes. Total computational complexity is

the sum of complexities of all the levels of the tree.

There are two different cases (as discussed below) to

calculate the complexity that depending upon the

number of decision attributes. Let n be the total

number of rules defined in the policy set. Let us also

consider that a, o, s, c, are the number of distinct

attribute values for action, object, subject and

contextual attribute values respectively. Formulas to

calculate complexity at all these levels have defined

below for both cases.

Case 1

In this case, only two decision attribute values are

considered, permit and deny. As a result, the main tree

is divided into two sub-trees.

For Action Attribute: 2()o a

Figure 10. Time complexity analysis by running ACPs

Validation Suite

Figure 11. Space complexity analysis by running

ACPs Validation Suite

For Object Attribute: 2()O o a×

For Subject Attribute: 2()O s o a× ×

For Context Attribute:

1

3(1) 1

a o s if c
O

a o s c if c

× × =⎛ ⎞
⎜ ⎟

× × × − >⎝ ⎠

2n a o s= × × ×

Case 2

In this case three decision attribute values are

considered, permit, deny and undefined. As a result,

the main tree is divided into three sub-trees.

For Action Attribute: 2(3)O o×

For Object Attribute: 2(3)O o a× ×

For Subject Attribute: 2(3)O s o a× × ×

For Context Attribute:

3 1

9(1) 1

a o s if c
O

a o s c if c

× × × =⎛ ⎞
⎜ ⎟

× × × − >⎝ ⎠

164 Journal of Internet Technology Volume 19 (2018) No.1

3n a o s= × × ×

In Figure 12 and Figure 13, we have shown the

complexity of proposed algorithms for case 1 and case

2 respectively. From both the graphs, we can conclude

that complexity of case 2 is three times higher than the

case 1. Also, both graphs show that the complexity

increases linearly with the increase in number of

contextual attributes whereas it increases more sharply

with the increase in number of distinct actions, objects,

and subjects.

Figure 12. Complexity analysis of proposed algorithm

for Case 1

Figure 13. Complexity analysis of proposed algorithm

for Case 2

6 Related Work and Qualitative Comparison

6.1 Related Work

Many policy validation methods have been presented

by researchers for the verification and validation of

access control policies. Various approaches have been

used to detect inconsistencies in access control policies

such as modeling techniques, formal methods, data

mining techniques and classification algorithms etc.

For more details, readers can consult the survey paper

by Aqib and Shaikh [1].

Sheikh et al. [2] and Fisler et al. [10] have used the

decision diagram techniques for this purpose. Sheikh et

al. have used the data classification techniques like ID3

[11], C4.5 [12] and ASSISTANT 86 [13] to generate

decision trees. They have proposed some modifications

in these algorithms. On the other hand, Fisler et al.

have used another type of decision diagram techniques

and have presented a software called Margrave by

implementing the binary decision diagrams. It also

includes the rule-combining algorithms of XACML

[21].

Mukkamala et al. [14], Bauer et al. [9] and Evan

Martin and Tao Xie [15] have used the data mining

approach to resolve this issue in access control policies.

They have used the techniques, mainly used in data

mining for the extraction of required data from the

large amount of data to detect the rules in defined

policies that make those policies inconsistent. For

example, Bauer et al. [9] have used the Apriori

algorithm [16] by the authors to apply the association

rule mining approach.

Modeling tools have also been used by researchers

for the verification and validation of access control

policies. Different modelling languages have used for

this purpose. For example, Hwang et al. [16] have

developed a tool named Access Control Policy Testing

(ACPT) and have used the symbolic model checker

NuSMV [17]. Similarly, Mankai and Logrippo [4] also

have proposed a solution for this purpose and they also

have used a modeling tool Alloy [18-20].

6.2 Qualitative Comparison with Existing

Methods

In Table 4, we have compared our scheme with 12

other existing validation methods. The comparison has

been presented from the following seven parameters:

(1) Approach

(2) Inconsistency detection

(3) Inconsistency resolution

(4) Boolean expression

(5) Continuous attribute handling

(6) Dynamic data handling

(7) Contextual attributes

Table 4 clearly indicates that our tool has its

distinctive place in state-of-the-art work. In terms of

feature comparison, our work is similar to the work of

Shaikh et al. [2-3]. However, they have adopted data

classification approach and we have adopted tree-based

algorithmic approach. On the positive side, our method

is relatively easy to implement and we have provided

proof-of-concept implementation. On the negative side,

our work is limited to inconsistency detection only.

Whereas, Shaikh et al. [3] shows that their method can

also be used to detect incompleteness.

A Tool for Access Control Policy Validation 165

7 Conclusion and Future Work

In this article, we have proposed an algorithm-based

approach to detect inconsistencies in the access control

policies. Also, we have developed a tool to validate the

access control policies by implementing the proposed

algorithm. We demonstrate that our proposed can

efficiently detect inconsistencies in access control

policies especially those which involve contextual

attributes and Boolean expressions. By supporting

Boolean expressions, continuous attribute values, and

contextual attribute values, our proposed algorithm

also reduces the number of rules.

The proposed solution also has some limitations. For

example, this algorithm supports bounded continuous

attribute values and does not provide any solution for

detection and resolution of incompleteness problem. So

in the future, we are planning to address these issues.

In addition to these, we will also improve the

performance in terms of computational complexity.

References

[1] M. Aqib, R. A. Shaikh, Analysis and Comparison of Access

Control Policies Validation Mechanisms, International Journal

of Computer Network and Information Security, Vol. 7, No. 1,

pp. 54-69, February, 2015.

[2] R. A. Shaikh, K. Adi, L. Logrippo, S. Mankovski, Inconsistency

Detection Method for Access Control Policies, Proc. of Sixth

International Conference on Information Assurance and

Security, Atlanta, Georgia, 2010, pp. 204-209.

[3] R. A. Shaikh, K. Adi, L. Logrippo, A Data Classification

Method for Inconsistency and Incompleteness Detection in

Access Control Policy Sets, International Journal Information

Security, Vol. 16, No. 1, pp. 91-113, February, 2017.

doi:10.1007/s10207-016-0317-1

[4] M. Mankai, L. Logrippo, Access Control Policies: Modeling

and Validation, Proc. Of the 5th NOTERE Conference,

Gatineau, Canada, 2005, pp. 85-91.

[5] V. R. Karimi, D. D. Cowan, Verification of Access Control

Policies for REA Business Processes, 33rd Annual IEEE

International Computer Software and Application Conference,

Seattle, Washington, 2009, pp. 422-427.

[6] J. Ma, D. Zhang, G. Xu, Y. Yang, Model Checking Based

Security Policy Verification and Validation, Proc. of 2nd

International Workshop on Intelligent Systems and Applications

(ISA), IEEE, Wuham, China, 2010, pp. 1-4.

[7] B. Wu, X. Chen, Y. Zjang, X.-D. Dai, An Extensible Intra

Access Control Policy Conflict Detection Algorithm, Proc. of

International Conference on Computational Intelligence and

Security, San Francisco, CA, 2009, pp. 483-488.

[8] A. Mohan, D. M. Blough, T. Kurc, A. Post, J. Saltz,

Detection of Conflicts and Inconsistencies in Taxonomy-

based Authorization Policies, Proc. of IEEE International

Conference on Bioinformatics and Biomedicine, Atlanta,

Georgia, 2011, pp. 590-594.

[9] L. Bauer, S. Garriss, M. K. Reiter, Detecting and Resolving

Policy Misconfigurations in Access-Control Systems, Proc.

of ACM Symposium on Access Control Models and

Technologies (SACMAT), 2008, New York, NY, pp. 185-194.

[10] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, M. C.

Tschantz, Verification and Change-impact Analysis of

Access-Control Policies, Proc. of the 27th International

Conference on Software Engineering, New York, NY, 2005,

pp. 196-205.

[11] Quinlan, J. R. Induction of Decision Trees, Mach. Learn, Vol.

1, No. 1, pp. 81-106, March, 1986.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning,

Morgan Kaufmann Publishers, 1993.

[13] B. Cestnik, I. Kononenko, I. Bratko, Assistant 86: A

Knowledge Elicitation Tool for Sophistical Users, Proc. of

166 Journal of Internet Technology Volume 19 (2018) No.1

the 2nd European Working Session on Learning, Sigma,

Wilmslow, 1987, pp. 31-45.

[14] R. Mukkamala, V. Kamisetty, P. Yedugani, Detecting and

Resolving Misconfigurations in Role-Based Access Control,

Proc. of 5th International Conference on Information System

Security (ICISS), Kolkata, India, 2009, pp. 318-325.

[15] E. Martin, T. Xie, Inferring Access-Control Policy Properties

via Machine Learning, Proc. of the Seventh IEEE

International Workshop on Policies for Distributed Systems

and Networks, Washington, DC, 2006, pp. 235-238.

[16] J. Hwang, T. Xie, V. Hu, M. Altunay, ACPT: A Tool for

Modeling and Verifying Access Control Policies, Proc. of

IEEE International Symposium on Policies for Distributed

Systems and Networks, Fairfax, VA, 2010, pp. 40-43.

[17] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M.

Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV

Version 2: An OpenSource Tool for Symbolic Model

Checking, Proc. of 14th International Conference on

Computer Aided Verif ication (CAV), Copenhagen, Denmark,

2002, pp. 359-364.

[18] D. Jackson, ALLOY Home Page, http://sdg.lcs.mit.edu/alloy/

detaulb.htm

[19] D. Jackson, Micromodels of Software: Lightweight Modelling

and Analysis with ALLOY, http://sdg.lcs.mit.edu/dng

[20] D. Jackson, ALLOY 3.0 Reference Manual, http://alloy.mit.

edu/beta/reference-manual.pdf

[21] E. Rissanen, eXtensible Access Control Markup Language

(XACML) Version 3.0. 22 January 2013. OASIS Standard,

http://docs.oasis-open.org/xacml/3.0/ xacml-3.0-core-spec-os-

en.html

[22] L. Sun, H. Wang, X. Tao, Y. Zhang, J. Yang, Privacy

Preserving Access Control Policy and Algorithms for

Conflicting Problems, Proc. of International Joint

Conference of IEEE TrustCom, 2011, pp. 250-257.

[23] R. Abassi, S. Guemara, E. Fatmi, An Automated Validation

Method for Security Policies: The Firewall Case, Proc. of the

4th International Conference on Information Assurance and

Security, Napoli, Italy, 2008, pp. 291-294.

[24] L. Bravo, J. Cheney, I. Fundulaki, ACCOn: Checking

Consistency of XML Write-Access Control Policies, Proc. of

the 11th Int. Conference on Extending Database Technology:

Advances in Database Technology, Nantes, France, 2008, pp.

715-719.

[25] B. Shafiq, J. Vaidya, A. Ghafoor, E. Bertino, A Framework

for Verification and Optimal Reconfiguration of Event-driven

Role Based Access Control Policies, Proc. of ACM Symp. on

Access Control Models and Technologies (SACMAT),

Newark, NJ, 2012, pp. 197-208.

[26] M. Guarnieri, M. Marco, Arrigoni Neri, E. Magri, S. Mutti,

On the Notion of Redundancy in Access Control Policies,

Proce. of the 18th ACM Symposium on Access Control

Models and Technologies, New York, NY, 2013, pp. 161-172.

Biographies

Muhammad Aqib is currently working

towards the Ph.D. degree in HPC and

Big Data at King Abdulaziz University,

Jeddah, Saudi Arabia. He received the

M.S. degree in Computer Science

from KAU in 2014. His research

interest includes HPC, big data, privacy, and security.

Riaz Ahmed Shaikh is an Associate

Professor at the CS Dept. in the King

Abdulaziz University, Jeddah, Saudi

Arabia. He obtained his Ph.D. from

Computer Engineering Dept., of

Kyung Hee University, Korea, 2009,

and M.S. in IT from the National University of

Sciences and Technology, Pakistan, 2005. His research

interest includes privacy, security, and trust

management. For more information please visit

http://sites.google.com/site/riaz289.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

