
Bit Rate-based H.264 Video Copy Detection 99 

 

Bit Rate-based H.264 Video Copy Detection 

Jian Li, Yan Kong* 

Jiangsu Engineering Center of Network Monitoring, School of Computer and Software, Nanjing University of 

Information Science & Technology, China 

lijian_cs@nuist.edu.cn, kongyan4282@163.com 

                                                           
*Corresponding Author: Jian Li; E-mail: lijian_cs@nuist.edu.cn 

DOI: 10.3966/160792642018011901009 

Abstract 

In this paper, we propose a bit rate-based copy 

detection scheme for H.264 compressed video. The 

video descriptor is extracted from the compressed 

video domain thus without the need of decoding the 

stream. We firstly segment the video stream into a 

series of shots, then organize the bit rate of the P-

frames within each shot in time sequencing, and 

perform low-pass filtering on the bit rate sequence to 

reduce the noise from video coding, and finally we 

obtain the video descriptor from the filtered bit rate 

sequences shot by shot. The duplicated video is 

identified by measuring the edit distance between the 

video descriptors. The most obvious advantage of our 

proposed CBCD scheme is of low computational load 

under high detection accuracy. Besides, experimental 

results demonstrate that it is also able to resist most 

common video operations, such as re-encoding, 

cropping etc. 

Keywords: Video copy detection, H.264, Bit rate-based, 

Edit distance 

1 Introduction 

The rapid growth of Internet video applications like 

YouTube raises two urgent issues, video content 

management and video copyright protection. One 

fundamental question about these issues is to identify 

the videos from the same source while possibly 

undergoing various different transformations such as 

re-encoding, scaling etc. There are two kinds of 

method promising to carry out this task, i.e., digital 

watermarking and content based copy detection 

(CBCD). We focus on the latter in this study. 

One CBCD scheme normally consists of the 

following two processes: first extracting the descriptor 

from the video content, and then identifying the 

duplication by comparing the query’s descriptor to the 

target’s one. In the literature, most proposed video 

descriptors were extracted from the decoded video 

frames (referred to as frame-based descriptors) [1-5]. It 

has been demonstrated that the frame-based descriptors 

are robust against common video transformations, 

including resolution change, luminance shift, display 

format conversions and etc. These methods are mostly 

based on image processing and pattern recognition 

techniques [8, 17-18, 20]. Besides frame-based 

descriptors, Wu et al. [6] proposed a descriptor 

capturing the camera transitional behaviors (CTB), 

such as shot boundaries and camera panning/tilting. 

This CTB-based descriptor was rather efficient in 

terms of descriptor extraction and matching. 

Digital videos are commonly stored and distributed 

in compression format. A video decoding procedure is 

hence required before extracting the descriptor, which 

will consume some time and, especially, large memory 

resources. However, the efficiency of extracting video 

descriptor is not taken as a serious issue by most 

existing CBCD schemes, because they consider the 

time of query descriptor extraction to be insignificant 

[7]. But it is not the truth in reality. For instance, 

YouTube has 300 hours of new video uploaded per 

minute, and this number is still increasing now. So 

without a compact yet efficient descriptor it will be 

incredibly time-consuming to find video duplication 

given such a large number of queries, not to mention 

constructing descriptor database for the already stored 

videos. Intuitively, it should be much more efficient to 

extract the descriptor directly from a compressed video. 

Although the idea emerged as early as MPEG-2 era, 

these schemes [9-10, 12] cannot be directly applied to 

the new video coding standard, i.e. H.264, which is 

widely used now. 

In this paper, a novel video copy detection scheme 

for H.264 video is proposed. We firstly segment the 

video into a series of shots by analyzing the video 

stream. Then the video descriptor is extracted from all 

of these shots. A frame recording the complex or fast 

moving scene usually needs more bits for coding. That 

is the frame bit rate roughly reflects the information 

quantity of one frame. And the bit rate sequence of the 

frames in one shot is closely related to the video 

content. However, the obtained bit rate is also 

dependent on the coding setup. We take the influence 

from video coding as noise added to the information 

quantity. Therefore we apply low-pass filtering on the 



100 Journal of Internet Technology Volume 19 (2018) No.1 

 

bit rate sequences to remove the noise from video 

coding, and obtain the video descriptor from the 

filtered bit rate sequences. In the descriptor matching 

process, editor distance [4, 13] is employed to estimate 

the similarity between the query and the target. The 

experimental results demonstrate that the proposed 

video descriptor is resistant to common video 

transformations, such as cropping, scaling and re-

encoding. 

The rest of this paper is organized as follows. 

Section 2 provides a framework of our proposed video 

copy detection scheme. The descriptor extraction and 

matching algorithms are introduced in Section 3. We 

present the experimental results in Section 4, followed 

by the conclusion in Section 5. 

2 Framework of The CBCD Scheme in 

Compressed Domain 

Figure 1 illustrates a prototype framework of the 

CBCD system for compressed video. Because the input 

query could be compressed by any video compression 

standard, we need to identify the query’s compression 

format first, and then select the algorithms of 

descriptor extraction and matching accordingly. The 

descriptors of the database videos are extracted 

previously for all the considered compression standards, 

and are then stored in separate descriptor databases. 

Please note that the construction of different kinds of 

descriptor databases for various compression standards 

only increase the offline descriptor extraction time, 

while the online efficiency regarding extraction of 

descriptor of query video and descriptor matching 

process is not influenced. Therefore, by cooperating 

with the schemes designed for other compression 

standards, our scheme can be efficiently used in an 

online video repository system for copy detection. 

3 Descriptor Extractions and Matching 

Algorithm 

In this section we will introduce the video descriptor 

extraction and matching algorithms. From Subsection 

3.1 to 3.3 we will detail the three components involved 

descriptor extraction, namely “Segmentation”, 

“Alignment”, ‘Filtering and Normalization’ in Figure 1. 

The descriptor matching algorithm will be given in 

Subsection 3.4. 

3.1 Video Stream Segmentation 

Nowadays the H.264 codecs are capable of detecting 

scene change in a video stream for timely inserting the 

key frame there (aka instantaneous decoder refresh 

(IDR) frame). Hence, we can directly make use of this 

detection result from encoder. However, there also 

exists another kind of key frame being automatically 

inserted at a certain time interval, say, ten seconds 2. 

The second kind of key frame serves as the random 

access (or seeking) points of video stream. These two 

kinds of key frames are illustrated in Figure 2. We can 

identify the second kind of key frame easily since they 

are of a same distance apart from their immediately 

prior key frames, in particular, the distance is the 

largest interval between two adjacent key frames. After 

removing the second kind of key frame, the video 

stream is segmented into a sequence of shot by the key 

frames associated with scene change. For example, the 

first, the second and the fourth key frames in Figure 2 

define two shots. One may concern that video encoder 

is unable to detect the scene change consistently. 

Figure 3 presents a shot change detection result from 

x264, one popular H.264 encoder, with different 

setting. We can observe that the shots detected by 

encoder are mostly the same to each other regardless of 

encoding setup. Furthermore, the experimental results 

presented in Section 4 also demonstrate the robustness 

of the scene change result of the H.264 encoder. 



Bit Rate-based H.264 Video Copy Detection 101 

 

 

Figure 2. The key frames in one video clip (referred to 

as I-frame in the figure). Please note that the distance 

between the second and the third key frames is the 

same as the distance between the fourth and the fifth 

key frames. It is because the third and the fifth key 

frames are inserted at a same time interval 

 

Figure 3. Comparison of shot change detection results 

of x264 with different coding setups, namely CBR 

(constant bit rate) mode and CRF (constant rate factor) 

mode. The video is clipped from a long movie. The 

symbols “∗” and “◦” are used to indicate the occurrence 

of shot change. Specifically, the x-coordinate of the 

symbol is the number of the shot, while the y-

coordinate is the number of the frame where shot 

change occurs. Note that the detection results 

associated with CRF appears not aligned with that of 

CBR because of a few detection error in the preceding 

shots. However, after making a left shift for the CRF 

curve the two sets are mostly matched 

3.2 P-Frame Alignment 

We propose to use the bit rate evolution of the P-

frame as the feature of a video shot. It is based on the 

following two reasons why we adopt P-frame. First, 

unlike the B-frame that is not included in the H.264 

Baseline videos, the P-frames definitely exist in every 

single H.264 video; Second, unlike the IDR-frame that 

infrequently exists in video stream, the P-frames 

spread throughout a video shot and construct a skeleton 

of the video. However, we need to align the P-frames 

to solve the following two problems. One is that the 

quantization parameter (QP) of the P-frames may be 

different to each other. For instance, to code the video 

with CBR mode, the QP is varied with frames, i.e., the 

frame with more information is encoded with larger 

QP. So we need to get rid of the influence from QP, in 

order that the bit rate can approximately reflect the 

information entropy of the frame. As mentioned in [15], 

an increase of 1 in quantization parameter means the 

increase of quantization step by approximately 12%. 

Moreover, a change of the quantization step by 12% 

means an reduction of video bit rate by approximately 

12%. Based on this rule, we are able to obtain the bit 

rate of all P-frames with respect to a same QP 

(benchmark). In particular, both the average bit rate of 

all the P-frames within a shot and the bit rate of the 

first P-frame can be used as the benchmark. 

Besides, another problem is that the P-frames in 

video stream may vary with the number of B-frame. As 

shown in Figure 4, the number of B-frame inserted 

between P-frames is dependent on the video content 

and coding setup. To solvethis problem, we need to 

arrange the P-frames in time order. POC (picture order 

count) is a parameter written into video stream to 

record the time order of each frame. With the help of 

POC, we average out the bit rate of P-frames within a 

certain frame interval in order that the obtained bit rate 

sequence is arranged in time order. The frame interval 

must be larger than the maximum number of inserted 

B-frame. In real applications it is seldom to insert more 

than there B-frames between I- or P-frames. Hence, 

five is big enough to be as our frame interval. Figure 5 

presents an example of normalizing the P-frames. 

 

 

Figure 4. A same video shot with different B-frame 

setting. There are at most three B-frames inserted 

between I-/P-frames in the S1 sequence, while at most 

two B-frames inserted between I-/P-frames in the S2 

sequence. The largest number of B-frame that can be 

inserted is determined by encoder 

 

Figure 5. Example of P-frame alignment. We obtain a 

value that is the average bit rate of the P-frames in each 

5-frame interval 



102 Journal of Internet Technology Volume 19 (2018) No.1 

 

3.3 Low-pass Filtering and Normalizing 

It is noted that the sequence of bit rate of the P-

frames also contains noise resulted from video coding. 

The noise is introduced by various reasons, e.g., 

different inter-prediction algorithms or different coding 

setup. We need to smooth away this noise in order that 

the obtained video descriptor is mostly dependent on 

the video content. A direct solution is low-pass 

filtering given that the noise is usually located in the 

high frequency band. In our implementation, a 

Gaussian-kernel filter is employed to reduce such a 

kind of noise. Finally, for the sake of the subsequent 

matching process, the filtered bit rate sequence of the 

i
th

 shot is sub-sampled to a L dimensional vector si. We 

suggest setting the L at 32 considering the trade-off 

between descriptor distinctiveness and robustness. In 

order to achieve robustness against some attacks like 

re-encoding, the si is normalized as follows, 

 

( )

i

i

i

s
d

sum s
=

�

�

�
 (1) 

where d
�

is the descriptor of a video shot. The video 

escriptor is obtained by concatenating the vectors d
�

 of 

all the shots. 

3.4 Descriptor Matching 

We firstly discuss how to measure the similarity 

between two shot vectors, based on which we can 

calculate the edit distance between two video 

descriptors. As our shot vector is a histogram-like 

feature, it is suitable to apply χ
2
 test statistic to 

similarity measure as in [4]. Furthermore, it is 

observed that the relationship between two adjacent 

vector elements remains unchanged after video 

transformation. So we propose to integrate this 

characteristic into the χ
2
 test statistic. Suppose x

�

 and 

y
�

 are two shot vectors, the modified χ
2
 test statistic 

( , )C x y
� �

 is given by 

 
232

1

( )1
( , )

2

i i i

i i i

w x y
C x y

x y
=

−

=

+
∑

i� �

 (2) 

where parameter wi represents the relationship between 

the elements of two vectors, that is 

 
1 1

1 1

-1 if ( ) ( ) 0,

1 if ( ) ( ) 0.

i i i i

i

i i i i

x x y y
w

x x y y

− −

− −

− ⋅ − <⎧
= ⎨

− ⋅ − ≥⎩
 (3) 

Eq. (3) indicates that we do not consider the 

difference between xi and yi if they are both bigger (or 

smaller) than their preceding ones. A threshold is 

needed to define two different shots. In our 

implementation, the threshold is set at 0.008. That is 

two shots are regarded as from a same source if their 

modified χ
2
 test statistic (2) is smaller than 0.008. 

The similarity between two video descriptors can be 

measured by editor distance which has been widely 

used for string matching and video copy detection [4, 

13]. As defined in [13], the edit distance between two 

strings, s1 and s2, is the minimal cost of a sequence of 

operations that transfer s1 into s2. The operations are 

generally restricted to insertion, deletion and 

substitution. It is natural to apply such an idea to match 

two video descriptors consisting of equal sized vectors 

(these vectors are like the characters in the string). 

Assume v1 and v2 are two arbitrary video descriptors 

and the length of v1 is smaller than v2. The matching 

process is to calculate the smallest edit distance 

between v1 and v2 (including the subset of v2). 

Considering that the resulted edit distance is no bigger 

than the length of v1, we normalize the edit distance by 

dividing it by the length of v1. 

4 Experimental Results 

4.1 Database and Query Video Setup 

The database used in experimental works consists of 

a number of videos with different duration (from 5min 

to 1.5h, totally about 40 hours) and resolution (from 

320×240 to 1280×720). All the database videos are 

compressed by H.264 encoder x264 with Baseline 

Profile, CRF 23. We have 8 hours of query video, half 

of which are randomly selected from the database, 

namely positive queries. The positive queries are also 

transformed with various operations that will be 

detailed below. The other query videos are negative 

queries. 

4.2 Robustness and Distinctiveness Test 

We first test the descriptor’s robustness against 

some common video operations, namely re-encoding 

(H.264 Baseline profile, three-fold reduction in bit rate; 

H.264 High profile, two-fold reduction in bit rate), 

cropping (25% in both horizontal and vertical 

resolution), scaling (four-fold reduction in size), 

flipping (horizontally and vertically), sharping and 

blurring (ffmpeg video filter, luma amount=-2, 1). A 

normal user can perform these operations easily by a 

video tool like famous FFMPEG3. In Figure 6, we 

show the edit distance between each transformed 

positive query and its corresponding ground truth. 

Besides, in order to verify the distinctiveness of the 

descriptor the edit distances between all negative query 

and the database videos are also plotted. From the 

exper-imental results it is observed that the edit 

distances corresponding to the negative queries are 

mostly larger than 0.4. While the edit distances 

corresponding to the positive queries are mostly 

smaller than 0.4. Hence, we can use 0.4 as the threshold 

to differentiate the negative and positive queries, and 

achieve a comparable result with [19] in terms of 

recall-precision rate. It is worth noting that we only 



Bit Rate-based H.264 Video Copy Detection 103 

 

employ one simple feature while seven features are 

involved in [19]. In addition to the aforementioned 

common video operations, we also test the descriptor’s 

robustness against other transformations, like AWGN 

and camcording. This kind of transformation is able to 

greatly vary the video bit rate, and thus may influence 

the robustness of our proposed descriptor. Experimental 

results demonstrate that our scheme is able to resist 

AWGN to a certain extent (less than 15dB), but fails in 

camcording test. This performance is comparable to 

the traditional video copy detection schemes [14, 16], 

but is not as good as the most advanced ones [6-7]. We 

also speculate that all the features extracted from video 

compressed domain easily suffer from the attacks that 

introduce a large amounts of noise (such as camcording), 

considering the energy of noise could be much larger 

than that of the signals in compressed video. How to 

improve the scheme robustness against the attacks like 

AWGN and camcording is thus one of our future work. 

 

Figure 6. The statistical results of the edit distance 

between a negative query and a database video are 

shown by blue bins, while the buff bins indicate the 

statistics of the edit distance between the positive 

query and the corresponding ground truth in database. 

The threshold can be simply set at 0.4 to differentiate 

them 

5 Conclusion and Discussion 

In this paper, a CBCD scheme for H.264 compressed 

video has been proposed. It may be used in the 

domains of forensics [11], copyright protection etc. We 

first segment the video stream into a series of shots. 

Then we construct a bit rate sequence for each shot 

using its contained P-frames. Finally, the descriptor is 

extracted from the low-pass filtered bit rate sequence. 

The descriptor matching algorithm is based on the edit 

distance with proper modification. Apparently, our 

proposed CBCD scheme requires rather limited 

computational power owing to the efficient descriptor 

extraction algorithm. The bit rate of one P-frame is not 

robust, while with the help of low-pass filtering, the bit 

rate variation of the P-frames approximately reflects 

the content of the video, and thus is able to achieve 

robustness against common video operations. 

Experimental results also have confirmed our claim. 

We also note that our proposed CBCD scheme 

cannot completely be independent of the codec setting. 

For instance, an adversary may disable the scene 

change detection when coding the video, which will 

possibly vitiate the proposed scheme. However, in real 

applications, the query video uploaded to a repository 

website will be subsequently transcoded by a codec in 

order to fit the display requirements. We can perform 

the descriptor extraction process after transcoding the 

video, or more economically, using the bit rate 

information from the encoding process. As long as 

website uses a same video codec as the one associated 

with descriptor extraction, the influence from cdoec 

setting can be removed. 

Acknowledgement 

This work was supported in part by the Natural 

Science Foundation of Jiangsu Province, China under 

Grant BK20141006, and in part by the Nat-ural 

Science Foundation of the Universities in Jiangsu 

Province under Grant 14KJB520024, and in part by the 

Natural Science Foundation of China under Grants 

61502241, and in part by by the Priority Academic 

Program Develop-ment of Jiangsu Higer Education 

Institutionsi, and in part by the Nanjing Uni-versity of 

Information Science & Technology research foundation 

2015r050. 

References 

[1] L. Chen, F. W. M. Stentiford, Video Sequence Matching 

Based on Temporal Ordinal Measurement, Pattern Recognation 

Letters, Vol. 29, No. 13, pp. 1824-1831, October, 2008.  

[2] C.-Y. Chiu, H.-M. Wang, C.-S. Chen, Fast min-hashing 

Indexing and Robust Spatio-temporal Matching for Detecting 

Video Copies, ACM Transactions on Multimedia Computing, 

Communications, and Applications, Vol. 6, No. 2, pp. 1-23, 

March, 2010. 

[3] J. Law-To, L. Chen, A. Joly, I. Laptev, O. Buisson, V. Gouet-

Brunet, N. Boujemaa, F. Stentiford, Video Copy Detection: A 

Comparative Study, ACM International Conference on Image 

and Video Retrieval, Amsterdam, The Netherlands, 2007, pp. 

371-378. 

[4] M.-C. Yeh, K.-T. Cheng, A Compact, Effective Descriptor 

for Video Copy Detection, 17th ACM International 

Conference on Multimedia, Beijing, China, 2009, pp. 633-636. 

[5] C. Kim, B. Vasudev, Spatiotemporal Sequence Matching for 

Efficient Video Copy Detection, IEEE Transactions on 

Circuits and Systems for Video Technology, Vol. 15, No. 1, 

pp. 127 -132, January, 2005. 

[6] P. H. Wu, T. Thaipanich, C. C. J. Kuo, Detecting Duplicate 

Video Based on Camera Transitional Behavior, 2009 16th 

IEEE International Conference on Image Processing (ICIP), 



104 Journal of Internet Technology Volume 19 (2018) No.1 

 

Cairo, Egypt, 2009, pp. 237-240. 

[7] M. Douze, H. Jegou, C. Schmid, P. Perez, Compact video 

Description with Precise Temporal Alignment, 11th 

European Conference on Computer Vision, Crete, Greece, 

2010, pp. 522-535. 

[8] Z. Xia, X. Wang, X. Sun, Q. Wang, A Secure and Dynamic 

Multi-keyword Ranked Search Scheme over Encrypted Cloud 

Data, IEEE Transactions on Parallel and Distributed Systems, 

Vol. 27, No. 2, pp. 340-352, February, 2016. 

[9] V. Kobla, D. S. Doermann, K. Lin, C. Faloutsos, Compressed 

Domain Video Indexing Techniques Using Dct and Motion 

Vector Information in Mpeg Video, SPIE Conference on 

Storage and Retrieval for Image and Video Databases V, San 

Jose, CA, 1997, pp. 200-211. 

[10] H. Yi, D. Rajan, L.T. Chia, A Motion-based Scene Tree for 

Browsing and Retrieval of Compressed Videos, Information 

Systems, Vol. 31, No. 7, pp. 638-658, November, 2006.  

[11] J. Li, X. Li, B. Yang, X. Sun, Segmentation-based Image 

Copy-move Forgery Detection Scheme, IEEE Transactions 

on Information Forensics and Security, Vol. 10, No. 3, pp. 

507-518, March, 2015. 

[12] H. Wang, A. Divakaran, A. Vetro, S.-F. Chang, H. Sun, 

Survey of Compressed-domain Features Used in Audio-visual 

Indexing and Analysis, Journal of Visual Communication and 

Image Representation, Vol. 14, No. 2, pp. 150-183, June, 

2003. 

[13] G. Navarro, A Guided Tour to Approximate String Matching, 

ACM Computing Surveys, Vol. 33, No. 1, pp. 31-88, March, 

2001. 

[14] X.-S. Hua, X. Chen, H.-J. Zhang, Robust Video Signature 

Based on Ordinal Measure, 2004 IEEE International Conference 

on Image Processing (ICIP), Singapore, 2004, pp. 685-688. 

[15] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, 

Overview of the h.264/avc Video Coding Standard, IEEE 

Transactions on Circuits and Systems for Video Technology, 

Vol. 13, No. 7, pp. 560 -576, July, 2003. 

[16] L. Chen, F. W. M. Stentiford, Video Sequence Matching 

Based on Temporal Ordinal Measurement, Pattern Recognition 

Letters, Vol. 29, No. 13, pp. 1824-1831, October, 2008.  

[17] B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, S. Li, 

Incremental Support Vector Learning for Ordinal Regression, 

IEEE Transactions on Neural Networks and Learning 

Systems, Vol. 26, No. 7, pp. 1403-1416, July, 2015. 

[18] Z. Fu, X. Sun, Q. Liu, L. Zhou, J. Shu, Achieving Efficient 

Cloud Search Services: Multi-keyword Ranked Search over 

Encrypted Cloud Data Supporting Parallel Computing, IEICE 

Transactions on Communications, Vol. E98-B, No. 1, pp. 

190-200, January, 2015. 

[19] C. Kas, H. Nicolas, Compressed Domain Copy Detection of 

Scalable SVC Videos, 2009 Seventh International Workshop 

on Content-Based Multimedia Indexing, Chania, Greece, 

2009, pp. 89-94.  

[20] T. Ma, J. Zhou, M. Tang, Y. Tian, A. Al-Dhelaan, M. Al-

Rodhaan, S. Lee, Social Network and Tag Sources Based 

Augmenting Collaborative Recommender System, IEICE 

Transactions on Information and Systems, Vol. E98-D, No. 4, 

pp. 902-910, April, 2015. 

Biographies 

Jian Li is currently a Lecture in the 

School of Computer and Software at 

Nanjing University of Information 

Science & Technology, China. He 

received the B.S. and M.S. degrees 

from Shandong University, China, 

and the Ph.D. degree from Sun Yat-

Sen University, China, all in computer 

science, in 2004, 2007 and 2011 respectively. His 

research interests are information hiding and forensics. 
 

Yan Kong is currently a Lecture in 

the School of Computer and Software 

at Nanjing University of Information 

Science & Technology, China. She 

received the Ph.D degree from the 

University of Wollongong, Australia, 

in 2015. Her research interests include 

cloud computing, artificial intelligence, and big data. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


