
Android App Copy Protection Mechanism with Semi-trusted Loader 65

Android App Copy Protection Mechanism with

Semi-trusted Loader

Kuo-Yu Tsai*

Department of Applied Mathematics, Chinese Culture University, Taiwan

nicklastsai@gmail.com

*Corresponding Author: Kuo-Yu Tsai; E-mail: nicklastsai@gmail.com

DOI: 10.3966/160792642018011901006

Abstract

In this paper, we propose an Android App copy

protection mechanism with a semi-trusted loader. In the

proposed mechanism, an Android App is composed of an

APK (application package file) file and a JAR (Java

archive) file. As a mobile device user wants to purchase

an Android App from the market, he/she has to download

the APK file from the market and installs the APK in

his/her device. At the first execution time, the embedded

semi-trusted loader will download the encrypted JAR file

from the market, and the corresponding decryption key

for the encrypted JAR file. Then, the semi-trusted loader

decrypts the JAR file by using the decryption key, and

further, executes the loading for all functionalities. After

the loading, the semi-trusted loader will delete the

decryption key and the JAR file, and then store the

encrypted JAR file in the mobile device. After that, the

semi-trusted loader only download the decryption key

from the market as the mobile user wants to execute all

functionalities of the App. We adopt the signature

scheme to protect the embedded semi-trusted loader in

our proposed mechanism. As the semi-trusted loader

attempts to download the decryption key, the market

verifies if the semi-trusted loader is modified by verifying

the signature.

Keywords: Android App, Copy protection, Dynamic

loading, Semi-trusted loader

1 Introduction

According to Gartner’s report [6], the downloaded
times of mobile Apps will be more than 268 billion,
and the App market scale will be more than $77 billion
by 2017. More and more mobile Apps are designed,
created and deployed to mobile devices, such as smart
phones and tablets. However, there are various security
threats and potential attacks on the Android
vulnerabilities, and they have plagued mobile App
developers and mobile App markets [1, 9]. Recently,
Google announced two security mechanisms to solve
various piracy problems for Android Apps, including
the file permissions control mechanism and the license

verification library mechanism. In the file permissions
control mechanism, an App’s APK (application
package file) file will be stored in the /data/app folder
after the Android App is installed in a mobile user’s
device. Only the installed App can access the folder [3,
7]. In the license verification library mechanism, the
App will submit a query to the Google license server
for obtaining the license status as a mobile user wants
to execute his/her Android App on his/her mobile
device. According to the license status, it allows or
disallows the mobile user to execute the App on his/her
mobile device [3, 7]. However, the above mechanisms
cannot resist against the root attack on Android.
Suppose that a malicious mobile user attempts to root
his/her device for obtaining the folder permission.
After obtaining the folder permission, the adversary
can disassemble the APK and modify the APK file to
disable the licensing service. Other related anti-piracy
works [2, 8, 11-17, 21] adopt various techniques to
prevent the Android Apps from unauthorized
duplication, such as asymmetric and symmetric
encryption, steganographic techniques (fingerprinting
and watermarking), dynamic loading etc.

Kim [14] presented a copy protection system for
Android Apps based the on public key infrastructure.
To protect the Android Apps from illegal duplication,
all Apps are encrypted by using different symmetric
keys in Kim’s proposed copy protection system. As a
mobile user purchases an Android App, he/she will
obtain an App encrypted by using the advanced
encryption standard (AES for short) [5], and the
corresponding AES decryption key is encrypted by
using the mobile user’s RSA public key [19]. Only the
legitimate mobile user can recover the AES decryption
key with his/her private key. Adopting the same
concept, Moon et al. [17] also proposed a copyright
protection system with the asymmetric encryption and
symmetric encryption techniques for the Android
platform. Kim [14] and Moon et al. [17] claimed that
their proposed mechanisms can prevent the Apps form
be misused by illegal mobile users, respectively.
However, the APK file is stored in the /data/app folder
after the App is installed in the mobile user’s device. A
malicious mobile user may illegally replicate the APK

66 Journal of Internet Technology Volume 19 (2018) No.1

file and distribute the file to other unauthorized mobile
users.

For detecting illegal duplication of Android Apps, Ji
and Kim [12] presented a mobile inspector by using
fingerprinting techniques, in which an mobile inspector
and an inspector helper are used to detect illegal Apps
and pursue malicious distributors. The mobile
inspector is used to inspect if an illegal App is installed
on the mobile device. the inspector helper is
responsible for extracting and delivering the necessary
information for the mobile inspector. As a mobile user
purchases an Android App, the Android market inserts
the mobile user’s information into the APK file by
using the fingerprinting library. The mobile inspector
determines if the App is illegal according to the same
fingerprinting library as the Android market. In the
same year, Jang et al. [8] proposed steganography-
based software watermarking scheme to protect
Android Apps, in which a watermark is divided into
small bit strings of the same size and each bit string is
encoded into multiple bit strings, using the Chinese
Remainder Theorem [4]. The encoded bit strings are
embedded by reordering the sequence of instructions in
the basic blocks in Dalvik executable files. However, Ji
and Kim’s design [12] and Jang et al.’s scheme [8]
cannot resist transformation attacks.

Jeong et al. [11] proposed an anti-privacy
mechanism with class separation and dynamic loading
in 2012. In Jeong et al.’s proposed mechanism, an
Android App consists of an incomplete main App file
(IMA for short) and a separate essential class file (SEC
for short). As a mobile user purchases an Android App,
he/she has to download the IMA file from the Android
market and installs the IMA file on his/her mobile
device. The Android market will send the encrypted
SEC file to the mobile user when the mobile user first
executes the IMA. The downloaded encrypted SEC file
is decrypted and stored in the secure space, and then
SEC file is dynamic loaded for execution. Based on
dynamic loading, Jeong et al. [10] proposed an
integrity check approach to prevent execution for
unauthorized Apps, in which a MD5 hashing value [18]
is used to ensure the integrity of the SEC file. However,
both of Jeong et al.’s proposed mechanism [11] and
Jeong et al.’s proposed approach [10] cannot resist
against the root attack on the Android platform. A
malicious mobile user may root his/her mobile device,
and hence access the secure space for replicating the
decrypted SEC file.

Inspired from Moon et al.’s mechanism [17] and
Jeong et al.’s mechanism [11], Tsai et al. [20] proposed
an Android App copy protection mechanism with the
dynamic loading function. In Tsai et al.’s proposed
Android App copy protection mechanism, a complete
Android App also includes a SEC file and an IMA file.
As a mobile user purchases an Android App from the
Android market, the mobile user has to download and
install the IMA file on his/her mobile device. When the

mobile user wants to executes the IMA, the dynamic
loading function will download the SEC file from the
Android market and load the SEC file into the App’s
address space for enabling all functionalities. In
addition, the dynamic loading function will delete the
SEC file after the loading. However, Tsai et al.’s
proposed mechanism cannot also resist against the root
attack on the Android platform. Suppose that a
malicious mobile user attempts to root his/her device to
replicate the APK. He/she can disassemble the APK
and modify the dynamic loading function of the APK
file to disable the deletion capability. Hence, the
malicious user can replicate the SEC file, and illegally
distribute the SEC file. In addition, the mobile user has
to download the encrypted SEC file as he/she wants to
execute the IMA.

In this paper, we employ a semi-trusted loader
which may misbehave on its own, but the misbehavior
is detectable. In our proposed mechanism, we adopt the
signature scheme to ensure the integrity of the
embedded semi-trusted loader. At the first executing
time, the embedded semi-trusted loader will download
the encrypted SEC file from the market and the
corresponding decryption key for the encrypted SEC
file. Then, the semi-trusted loader decrypts the
encrypted SEC file by using the decryption key and
executes the loading for all functionalities. After the
loading, the semi-trusted loader will delete the
decryption key and the SEC file, and only store the
encrypted SEC file in the mobile device. After that, the
semi-trusted loader only downloads the decryption key
from the market as the mobile user wants to execute
the IMA.

The rest of this paper is organized as follows: In
Section 2, we reviews and analyze Tsai et al.’s
proposed Android App Copy Protection mechanism.
Section 3 presents our proposed Android App copy
protection mechanism to prevent mobile Apps from
illegal duplication. Security analysis of our proposed
mechanism and discussions are given in Section 4.
Section 5 presents conclusions.

2 Tsai et al.’s Android App Copy

Protection Mechanism

Table 1 lists the symbols used in the subsequent
descriptions.

Tsai et al.’s [20] proposed Android App copy
protection mechanism consists four phases: Registration

Phase, App Uploading Phase, App Purchase Phase,
and App Execution Phase. Detailed descriptions are as
follows.

2.1 Registration Phase

In this phase, a mobile user MUi has to prepare
his/her identity MUi, password pwi, and international
mobile equipment identity IMEIi and registers with the

Android App Copy Protection Mechanism with Semi-trusted Loader 67

Table 1. Symbols

Symbol Interpretation

AM App market

ASE App security enhancer

AD App developer

MUi

Mobile user MUi who purchases an Android

App and executes the App

pwi Mobile user MUi’s password

IMEIi
International mobile equipment identity of

the mobile user MUi’s mobile device

ULi Mobile user MUi’s license

KAM Secret key shared between AM and MUi

KASE Secret key shared between ASE and MUi

DK/EK
Symmetric decryption and encryption

algorithms using the same key K

S/V
Signature generation and verification

algorithms

DLF Dynamic loading function

AID App identity

APK Application package file

T Timestamp

SC Separated class

H One-way hashing function

App market AM via a secure channel. Detailed
descriptions are as follows. (see Figure 1)

Step1: The MUi sends his/her registration
information {MUi, pwi, IMEIi} to the AM.

Step2: After receiving {MUi, pwi, IMEIi}, the AM
generates a license ULi and two session keys
{KAM, KASE} for the MUi.

Setp3: The AM sends the secret information {ULi,
KAM, KASE} to the MUi.

MUi AM

1.Prepare , ,
i i i

MU pw IMEI

5.Store , ,
i AM ASE

UL K K

2. , ,

i i i
MU pw MIEI

4. , ,

i AM ASE
UL K K

3.Generate , ,

i AM ASE
UL K K

Figure 1. Registration phase

2.2 App Uploading Phase

An App developer AD develops a complete App
which is composed of a separated class SC and an
incomplete main App APK. The APK includes the
dynamic loading function DLF, which is responsible
for loading a SC. The SC includes the other additional
functionalities of the App. The AD uploads the APK
and the corresponding App identity AID into the AM
and the SC into the ASE, respectively.

2.3 App Purchase Phase

As a mobile user MUi wants to purchase an App
with the App identity AID, the MUi and the AM
cooperate to perform the following steps. (see Figure 2)

Step1: MUi encrypts AID, ULi, pwi, and IMEIi by
using his/her secret key KAM :

EK
AM

(ULi|| AID|| pwi|| IMEIi).

Step2: MUi sends {EK
AM

(ULi|| AID|| pwi|| IMEIi),

MUi} to the AM.
Step3: Upon receiving the purchase information,

the AM performs the decryption operation to
obtain AID, ULi, pwi, and IMEIi:

DK
AM

(EK
AM

(ULi|| AID|| pwi|| IMEIi)).

Setp4: The AM verifies the decrypted ULi, pwi, and
IMEIi. If all messages are valid, the AM
continues to perform Step 5; otherwise,
he/she rejects the request and returns the
failed information.

Step5: The AM generates a signature by using
his/her private key:
SigAM= SAM(H(APK|| AID|| ULi || IMEIi)).

Step6: The AM encrypts APK and SigAM by using
the secret key KAM:

EK
AM

(APK|| SigAM|| IMEIi).

Step7: The AM sends EK
AM

(APK|| SigAM|| IMEIi) to

the MUi.
Step8: The MUi decrypts the received data to obtain

APK:
DK

AM
(EK

AM
(APK|| SigAM|| IMEIi)).

Step9: The MUi installs the APK in his/her mobile
device.

MUi

AM

1. Encrypt , , ,
i i i

AID UL pw IMEI

8.Decrypt
2

C

9.Install APK

1
2. ,

i
C MU

2
7.C

1
3.Decrypt C

4.Verify , ,
i i i

UL pw IMEI

5.Generate
AM

Sig

2
6.Compute C

Note 1:
1

(|| || ||)
AM

K i i i
C E UL AID pw MIEI=

Note 2: ((|| || ||)
AM AM i i

Sig S H APK AID UL IMEI=

Note 3:
2

(|| ||)
AM

K AM i
C E APK Sig IMEI=

Figure 2. App purchase phase

2.4 App Execution Phase

When the MUi wants to execute his/her purchased

App, the DLF and the ASE cooperate to perform the

following steps. (see Figure 3)

Step1: The DLF encrypts ULi, Ti, SigAM, AID, and

IMEIi as:

Secure

Secure

68 Journal of Internet Technology Volume 19 (2018) No.1

EK
ASE

(ULi|| Ti|| SigAM|| AID|| IMEIi),

where Ti is the timestamp at the login mobile device.

Step2: The DLF sends the authentication infomration

{EK
ASE

(ULi|| Ti|| SigAM|| AID|| IMEIi), ULi} to

the ASE.

Step3: Upon receiving the information, the ASE

performs the decryption operation to obtain

ULi, Ti, SigAM, AID, and IMEIi:

DK
ASE

 (EK
ASE

(ULi|| Ti|| SigAM|| AID|| IMEIi)).

Step4: The ASE performs the following authentication

process.

Step4-1: Verify if Ti is valid, then continue to

perform Step 4-2; Otherwise, reject the

request.

Step4-2: Verify if ULi and the corresponding

IMEIi correct, then continue to perform

the next step; Otherwise, reject the

request.

Step4-3: Perform the signature verification

operation:

VAM(SAM(H(APK|| AID|| ULi || IMEIi))).

If all verification steps are correct, it means that the

received execution request is new, and the legal user

MUi executes his/her App on the specified mobile

device with the IMEIi; Otherwise, the ASE rejects

MUi’s execution request.

Step5: The ASE generates the signature SigASE:

SigASE= SASE(H(ULi|| T′i|| AID|| SC|| IMEIi)),

where T′i is the transmission timestamp sent

by the ASE, and the SC is a separated class.

Step6: The ASE encrypts T′i, SC, and SigASE as:

EK
ASE

(T′i|| SC|| SigASE)

Step7: The ASE sends EK
ASE

(T′i|| SC|| SigASE) to the

DLF.

Step8: After receiving the transmitted data, the DLF

decrypts EK
ASE

(T′i|| SC|| SigASE) to obtain T′i,

SC, and SigASE.

Step9: The DLF performs the following verification

process.

Step9-1: Verify if T′i is valid, then continue to

perform the next step; Otherwise, reject

to perform Step9-2.

Step9-2: Perform the signature verification

operation:

VASE(SASE(H(UL i|| T′i|| AID|| SC||

IMEIi)).

If all verification steps are correct, it means that the

MUi is a legal mobile user; otherwise, the DLF rejects

to load the SC.

Step10:The DLF loads the SC, and then, the MUi to

execute all functionalities of the App.

LDF

ASE

, ,1. Encrypt , ,
i i AM i

UL T Sig AID IMEI

8.Decrypt
4

C

9. Verify ,
i ASE
T Sig′

10.Load the SC

3
2. ,

i
C UL

4
7.C

3
3.Decrypt C

4.Verify , , ,
i i i AM
T UL IMEI Sig

5.Generate
ASE

Sig

4
6.Compute C

Note 1:
3

(|| || || ||)
KASE i i AM i

E UL T Sig AID IMEIC =

Note 2: ((|| ||))
ASE ASE i ii

Sig S H UL T AID SC IMEI′=

Note 3:
4

()
KASE i ASE

E T SC SigC ′=

Figure 3. App execution phase

2.5 Discussions

To prevent the SC from illegal duplication, the DLF

will delete the SC in the mobile device as the

functionalities are loaded. However, a malicious

mobile user may root his/her device and replicate the

APK stored in the /data/app folder. Futher, the

malicious mobile user can disassemble the APK and

modify the dynamic loading function to disable the

deletion capability. Hence, the SC will be stored in the

mobile device, and the malicious user can replicate the

SEC file, and illegally distribute it to other

unauthorized mobile users. In addition, the DLF has to

download the encrypted SC as the mobile user wants to

execute the App.

3 Our Proposed Android App Copy

Protection Mechanism

Table 2. Additional symbols

Symbol Interpretation

STL Semi-trusted loader

CharSTL Characteristics for the STL

Most of the symbols used in our proposed

mechanism are the same as ones used in Tsai et al.’

proposed mechanism [20]. The dynamic loading

function in Tsai et al.’ proposed mechanism may be

modified by a malicious mobile user. Hence, we

employ a semi-trusted loader which may misbehave on

its own, but the misbehavior is detectable. Our

proposed consists five phases: Registration Phase,

Android App Uploading Phase, App Purchase Phase,

App First Executing Phase, and App Second

Executing Phase. The descriptions of Registration

Phase are the same as ones in Tsai et al.’ proposed

mechanism. Detailed descriptions of other phases are

follows.

Android App Copy Protection Mechanism with Semi-trusted Loader 69

3.1 Android App Uploading Phase

An App developer AD develops a complete App

consisting of a separated class SC and an incomplete

main App APK. The APK file includes the semi-trusted

loader STL and the characteristics CharSTL for the STL.

The STL is responsible for loading a separated class SC

and deleting SC and secure keys. The SC includes the

other additional functionalities of the App. The AD

generates a signature SigAD= SAD(H(APK|| AID||

CharSTL)) and uploads the APK and the corresponding

App identity AID into the AM and the SC and SigAD

into ASE, respectively.

3.2 App Purchase Phase

Most steps are the same in Tsai et al.’ proposed

mechanism [20], except Step 5 and Step 6, as follows.

(see Figure 4)

Step5: The AM generates a signature by using

his/her private key:
SigAM= SAM(H(APK|| AID|| SigAD|| ULi || IMEIi)).

Step6: The AM encrypts APK and SigAM by using

the secret key KAM:

EK
AM

(APK|| SigAM|| SigAD|| IMEIi).

MUi

AM

1. Encrypt , , ,
i i i

AID UL pw IMEI

8.Decrypt
2

C

9.Install APK

1
2. ,

i
C MU

2
7.C

1
3.Decrypt C

4.Verify , ,
i i i

UL pw IMEI

5.Generate
AM

Sig

2
6.Compute C

Note 1:
1

(|| || ||)
AM

K i i i
C E UL AID pw MIEI=

Note 2: ()()
AM A AD iM i

H APK AID Sig UL IMSi S EIg =

Note 3:
2

(|| || ||)
AM

K A ADM i
C E APK Sig IMSi EIg=

Figure 4. App purchase phase

3.3 App First Executing Phase

As the MUi wants to execute all functionalities of

his/her purchased App, the STL embedded in the App

and the ASE will perform the authentication process.

(see Figure 5)

Step1: The STL generates the ciphertext EK
ASE

(ULi||

Ti|| SigAM|| SigAD|| AID|| IMEIi), where Ti is

the timestamp for the transmission performed

by the STL.

Step2: The STL sends the authentication information

{EK
ASE

(ULi|| Ti|| SigAM|| SigAD|| AID|| IMEIi),

ULi} to the ASE.

Step3: After receiving {EK
ASE

(ULi|| Ti|| SigAM||

SigAD|| AID|| IMEIi), ULi}, the ASE decrypts

the received messages to obtain ULi, Ti,

SigAM, SigAD, AID, and IMEIi.

STL

ASE

1. Encrypt , , , , ,
i i AM AD i

UL T Sig Sig AID IMEI

8.Decrypt
4

C

9. Verify ,
i ASE
T Sig′

10.Load the SC

3
2. ,

i
C UL

4
7.C

3
3.Decrypt C

,4.Verify , ,
i i i
T UL IMEI

,
AM AD

Sig Sig

5.Generate
ASE

Sig

4
6.Compute C

Note 1:
3

(|| || || || ||
KASE i i AM AD i

E UL T Sig Sig AIDC IMEI=

Note 2: ((||))
ASE ASE i i i i

Sig S H UL T AID SC IMEI K′=

Note 3:
4

(||)
KASE i ASE i

E T SC SigC K′=

Figure 5. App first executing phase

Step4: The ASE performs the following steps to

verify if the mobile user MUi is legal and the

STL is not modified by anyone.

Step4-1: Verify if Ti is valid, then continue to

perform Step 4-2; Otherwise, reject the

request.

Step4-2: Verify if ULi and the corresponding

IMEIi are correct, then continue to

perform the next step; Otherwise, reject

the request.

Step4-3: Perform the signature verification operation:

VAM(SAM(H(APK|| AID|| SigAD|| ULi ||

IMEIi))).

If the signature verification is correct, it

means that MUi is a legal mobile user,

and the ASE continues to perform Step

4-4; Otherwise, he/she rejects the

execution request.

Step4-4: Retrieve the CharSTL from the STL.

Step4-5: Perform the signature verification

operation:

VAD(SAD(H(APK|| AID|| CharSTL))).

If the above signature verification is

also correct, it ensures the integrity of

the STL, and the ASE continues to

perform Step 5; Otherwise, the ASE

rejects the execution request.

Step5: The ASE generates the signature SigASE=

SASE(H(ULi|| T′i|| AID|| SC|| IMEIi|| Ki)),

where T′i is the transmission timestamp sent

by the ASE, and Ki is the short-term secret

key for encrypting the SC.

Step6: The ASE preforms the encryption operation

EK
ASE

(T′i|| SC|| SigASE|| Ki).

Step7: The ASE sends EK
ASE

(T′i|| SC|| SigASE|| Ki) to

the STL.

Step8: Upon receiving EK
ASE

(T′i|| SC|| SigASE|| Ki),

the STL decrypts EK
ASE

(T′i|| SC|| SigASE|| Ki) to

obtain T′i, SC, SigASE, and Ki.

Step9: The STL performs the following steps.

70 Journal of Internet Technology Volume 19 (2018) No.1

Step9-1: Verify if T′i is valid, then continue to

perform Step9-2; Otherwise, reject it.

Step9-2: Perform the signature verification

operation VASE(SASE(H(ULi|| T′i|| AID||

SC|| IMEIi|| Ki))).

Step10: The STL loads the SC to allow the MUi to

execute all functionalities of the App.

Step11: The STL deletes the SC and Ki in the

mobile device and store EK
i
(T′i || SC|| SigASE)

in the secure space.

3.4 App Second Executing Phase

After the first time for executing the App, the STL

embedded in the App performs the authentication

process as the MUi wants to execute all functionalities

of his/her purchased App. (see Figure 6)

Step1: The STL generates the authentication

information EK
ASE

(ULi|| T″i|| SigAM|| AID||

IMEIi), where T″i is a timestamp for the

transmission performed by the STL.

Step2: The STL sends {EK
ASE

(ULi|| T″i|| SigAM|| AID||

IMEIi), ULi} to the ASE

Step3: Upon receiving the information, the ASE

decrypts EK
ASE

(ULi|| T″i|| SigAM|| AID|| IMEIi)

and obtains ULMU, TMU, SigAM, AID, and

IMEI.

Step4: The ASE performs the same steps described

in App First Executing Phase to ensure the

legality of the MUi and integrity of the STL.

Step5: The ASE generates the encryption

EK
ASE

(T′′′i|| Ki), where T′′′i is a timestamp for

the transmission performed by the ASE;

Otherwise, the ASE rejects MUi’s App

execution request.

Step6: The ASE sends EK
ASE

(T′′′i|| Ki) to the STL.

Step7: After receiving EK
ASE

(T′′′i|| Ki), the STL

decrypts EK
ASE

(T′′′i|| Ki) to obtain Ki.

Step8: The STL verifies if T′′′i is valid, then the STL

continues to perform Step 9-2; Otherwise,

reject it.

Step9: The STL uses Ki to decrypt EK
i
(TASE|| SC||

SigASE).

Step10: The STL loads the SC to allow the MUi to

execute all functionalities of the App.

Step11: The STL deletes the SC and Ki in MUi‘s

mobile device.

4 Analysis and Discussions

4.1 Security Analysis

Our proposed mechanism achieves resistance to

illegal copy, unforgeability, resistance to the man-in-

the middle attack, and resistance to the replay attack.

Detailed description are as follows.

STL

ASE

5
1. Compute C

8.Decrypt
4

C

9. Verify
i
T ′′′

10.Load the SC

5
2. ,

i
C UL

6
6.C

5
3.Decrypt C

,4.Verify , ,
i i i
T UL IMEI

,
AM AD

Sig Sig

6
5.Compute C

Note 1:
5

(|| || || ||)²
KASE i i AM i

E UL T Sig AID IMEIC =

Note 2:
6

(||)
KASE i i

C E T K′′′=

Figure 6. App Second Executing Phase

Resistance to illegal copy. In our experiment, the STL

can dynamically load and delete the SC and decryption

key Ki. Hence, a malicious user cannot illegally obtain

the SC even though he/she has rooted his/her mobile

device.

Unforgeability. Consider two scenarios: (1) An

adversary may try to cheat the ASE and claim that

he/she has purchase some App. However, the

adversary cannot successfully forge SigAM=

SAM(H(APK|| AID|| ULMU|| IMEI)) without the AM’s

private key to pass the verification process performed

by the ASE. (2) An adversary may try to cheat the STL

and claim that he/she has purchase some App for the

specified mobile device. However, the adversary

cannot successfully forge SASE(H(ULMU|| TASE|| AID||

SC|| IMEI)) due to he/she does not have the ASE’s

private key.

Resistance to the man-in-the middle attack. Suppose

that an adversary attempts to decrypt the data in the

App purchase and the App execution phases. However,

he/she cannot obtain the decrypted data without KAM

and KASE.

Resistance to the replay attack. Assume that an

adversary attempts to intercept the transmitted data and

replay them. However, he/she cannot success due to

each transmitted data includes a timestamp.

4.2 Comparison

In comparison of Jeong et al.’s mechanism [11],

Jeong et al.’s mechanism [10] and Tsai et al.’s

mechanism [20], our proposed mechanism can detect

the root attack on the Android platform by verifying

the characteristics for the STL. Note that our proposed

mechanism is slightly outperformed, but our proposed

mechanism can achieve all functionalities listed in

Table 3.

Table 3. Comparison of functionalities

 F1 F2 F3

Our proposed mechanism Yes Yes Yes

Tsai et al.’s mechanism [20] No Yes Yes

Jeong et al.’s mechanism [11] No Yes No

Jeong et al.’s mechanism [10] No Yes Yes

Note: F1: providing the root attack detection.

Note: F2: providing the dynamic loading

Note: F3: ensuring the integrity of the SC

Android App Copy Protection Mechanism with Semi-trusted Loader 71

4.2 Prototype Implementation

To prove the practicability of our proposed

mechanism, we implement the prototype based on the

Android platform. As the MUi wants to execute his/her

purchased App, he/she has to input his/her identity and

password. (as shown in Figure 7(a))

(a) input MUi

and pwi

(b) verifcaion

result: legal

mobile user

(c) verifcaion

result: pirate

user

Figure 7. The prototype implementation of our proposed

mechanism

Then, the STL embedded in the App and the ASE

will perform the authentication process. If the

verification is successful, it means that the integrity of

the STL and the legality of the MUi are verified by the

ASE. The ASE will send the information. (shown as in

Figure 7(b))

5 Conclusion

In this paper, we propose an Android App copy

protection mechanism with a semi-trusted loader. In

our proposed mechanism, it is detectable as the semi-

trusted loader is modified by a malicious user. In

addition, we also prove the concept for our proposed

scheme by implementing a prototype in the Android

platform.

Our proposed mechanism is slightly outperformed,

and our future work is to design App copy protection

mechanism by using lightweight cryptographic

techniques.

Acknowledgment

The authors gratefully acknowledge the support

from Taiwan Information Security Center (TWISC)

and National Science Council under the grants 103-

2221-E-146-005 -MY2 and 103-2221-E-011-090-MY2

in Taiwan.

References

[1] H. S. Choi, Y. A. Au, C. Z. Liu, Is Digital Piracy an Enemy

of the Mobile App Industry? An Empirical Study on Piracy of

Mobile Apps, Proceedings of the 20th Americas Conference

on Information Systems (AMCIS 2014), Savannah, GA, 2014,

pp. 1-9.

[2] S. Choi, J. Jang, E. Jae, Android Application’s Copyright

Protection Technology Based on Forensic Mark, Proceedings

of the 2012 ACM Research in Applied Computation Symposium

(ACM RACS 2012), San Antonio, TX, 2012, pp. 338-339.

[3] C.-Y. Chuang, Y.-C. Wang, Y.-B. Lin, Digital Right

Management and Software Protection on Android Phones,

Proceedings of the IEEE 71st Vehicular Technology

Conference (VTC 2010-Spring), Taipei, Taiwan, 2010, pp.

1-5.

[4] C. Ding, D. Pei, A. Salomaa, Chinese Remainder Theorem:

Applications in Computing, Coding, Cryptography, World

Scientific Publishing, 1996.

[5] Federal Information Processing Standards Publications,

Advanced Encryption Standard, FIPS 197, 2001.

[6] Gartner Inc., Gartner Says by 2017, Mobile Users Will

Provide Personalized Data Streams to More Than 100 Apps

and services Every Day, http://www.gartner.com/newsroom/

id/2654115, January, 2014.

[7] Google Inc., Application Licensing, http://developer.android.

com/google/play/licensing/index.html, 2014.

[8] J. Jang, H. Ji, J. Hong, J. Jung, D. Kim, S. K. Jung, Protecting

Android Applications with Steganography Based Software

Watermarking, Proceedings of the 28th Annual ACM

Symposium on Applied Computing (ACM SAC 2013),

Coimbra, Portugal, 2013, pp. 1657-1658.

[9] J. Jang, S. Han, Y. Cho, U J. Choe, J. Hong, Survey of

Security Threats and Contermeasures on Android

Environment, Journal of Security Engineering, Vol. 11, No. 1,

pp. 1-12, 2014.

[10] Y.-S. Jeong, J.-C. Moon, D. Kim, S.-J. Cho and M. Park,

Preventing Execution of Unauthorized Applications Using

Dynamic Loading and Integrity Check on Android

Smartphones, Information, Vol. 16, No. 8(A), pp. 5857-5868,

August, 2013.

[11] Y.-S. Jeong, Y.-U. Park, J.-C. Moon, S.-J. Cho, D. Kim, M.

Park, An Anti-piracy Mechanism Based on Class Separation

and Dynamic Loading for Android Applications, Proceedings

of the 2012 ACM Research in Applied Computation

Symposium (ACM RACS 2012), San Antonio, TX, 2012, pp.

328-332.

[12] H. Ji, W. Kim, Design of a Mobile Inspector for Detecting

Illegal Android Applications Using Fingerprinting, Proceedings

of the 2013 Research in Adaptive and Convergent Systems

(RACS 2013), Montreal, Quebec Province, Canada, 2013, pp.

363-364.

[13] N. T. Kannengiesser, U. Baumgarten, S. Song, Secure Copy

Protection for Mobile Apps, Proceedings of the 12th

International Symposium on Ambient Intelligence and

Embedded Systems (AmiEs-2013), Berlin, Germany, 2013.

[14] S.-R. Kim, Copy Protection System for Android App Using

Public Key Infrastructure, Journal of Security Engineering,

Vol. 9, No 1, pp. 121-134, 2012.

[15] B. Kim, J. Jung, Impact of Multiple Watermarks for

Protecting Copyright of Applications on Smart Mobile

72 Journal of Internet Technology Volume 19 (2018) No.1

Devices, Proceedings of the 2013 Research in Adaptive and

Convergent Systems (RACS 2013), Montreal, Quebec

Province, Canada, 2013, pp. 359-360.

[16] S. Kim, E. Kim, J. Choi, A Method for Detecting Illegally

Copied APK Files on the Network, Proceedings of the 2012

ACM Research in Applied Computation Symposium (ACM

RACS 2012), San Antonio, TX, 2012, pp. 253-256.

[17] Y. C. Moon, J. H. Noh, A. R. Kim, S.-R. Kim, Design of

Copy Protection System for Android Platform, Proceedings

of International Conference on Information Technology,

System and Management (ICITSM 2012), Dubai, United Arab

Emirates, 2012.

[18] R. L. Rivest, The MD5 Message-Digest Algorithm, Request

for Comments 1321, Network Working Group, April, 1992.

[19] R. L. Rivest, A. Shamir, L. M. Adleman, A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems,

Communications of the ACM, Vol. 21, No. 2, pp. 120-126,

February, 1978.

[20] K.-Y. Tsai, Y.-H. Chiu, T.-C. Wu, Android App Copy

Protection Mechanism Based On Dynamic Loading,

Proceedings of the 18th IEEE International Symposium on

Consumer Electronics (ISCE 2014), Jeju, Korea, 2014, pp.

1-3.

[21] D. Tse, Z. Li, Y. Tao, K. F. Wong, W. H. Choi, W. Liu, Two-

factor Protection Scheme in Securing the Source Code of

Android Applications, Proceedings of the 2nd BCS

International IT Conference, Abu Dhabi, United Arab

Emirates, 2014, pp. 1-7.

Biography

Kuo-Yu Tsai is an Assistant Professor

at the Department of Applied Mathematics,

Chinese Cluture University, Taiwan. He

received his Ph.D. Degree in Information

Management from National Taiwan

University of Science and Technology,

Taiwan, in 2009. From 2009 to 2012,

he was a post-doctor at the Taiwan

Information Security Center, National Taiwan University

of Science and Technology, Taiwan. He joined as an

assistant professor in the Department of Management

Information Systems, Hwa Hsia University of

Technology from 2012 to 2016. His recent research

interests include IoT security, mobile commerce and

security, healthcare application and security, and

cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

